Algerian Journal of Engineering and Technology http://jetjournal.org/index.php/ajet <p>Algerian Journal of Engineering and Technology (AJET) is an international scholarly refereed research journal which aims to promote the theory and practice of technology, innovation, and engineering.</p> Faculty of Technology, University of Echahid Hamma Lakhdar, El-Oued, Algeria. en-US Algerian Journal of Engineering and Technology 2716-9227 Hexavalent chromium removal from simulated wastewater using biomass-based activated carbon: kinetics, mechanism, thermodynamics and regeneration studies http://jetjournal.org/index.php/ajet/article/view/46 <p>In this study, activated carbon (ACBA) was fabricated from <em>Balanites aegyptiaca</em> seed shell (BASS) using a two-step H<sub>3</sub>PO<sub>4</sub> activation approach and was tested for the adsorption of toxic hexavalent chromium [Cr(VI)] from simulated wastewater. The surface properties, morphology, and elemental composition of the prepared ACBA were examined via Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface area analyses. The influence of various operating conditions such as pH, adsorbent amount, contact time and temperature was investigated. Kinetic studies indicated that the pseudo second order model was able to provide a realistic description of the adsorption kinetics and that film diffusion was the dominating mechanism of the sorption process. The adsorption activation energy evaluated using kinetic data suggested physical nature of Cr(VI) adsorption onto the carbon surface. Thermodynamic investigation confirmed that the adsorption was spontaneous and endothermic in nature. Regeneration tests demonstrated that 0.2 M NaOH can appreciably desorb Cr(VI) from Cr(VI)-loaded ACBA and the regenerated adsorbent can be used for six successive adsorption-desorption cycles while sustaining an adsorption efficiency of 80.10%. Altogether, the ACBA showed high adsorptive performance, fast kinetics and reuse potential, indicating the suitability of its application in wastewater treatment.</p> <p><a href="https://doi.org/10.5281/zenodo.4542410"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4542410.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Yunusa U, Kubo AI, Abdullahi Y, &nbsp;Abdullahi T, Husaini M.,. Hexavalent chromium removal from simulated wastewater using biomass-based activated carbon: kinetics, mechanism, thermodynamics and regeneration studies. Alg. J. Eng. Tech. 2021, 4:29-44 <a href="http://dx.doi.org/10.5281/zenodo.4542410">http://dx.doi.org/10.5281/zenodo.4542410</a></p> <p><strong>References</strong></p> <ol> <li>Sharma YC. Adsorption characteristics of a low-cost activated carbon for the reclamation of colored effluents containing malachite green. <em>Journal of Chemical &amp; Engineering Data</em>. 2011;56(3):478-484.</li> <li>Hassan R, Arida H, Montasser M, Abdel Latif N. Synthesis of new Schiff base from natural products for remediation of water pollution with heavy metals in industrial areas. <em>Journal of Chemistry</em>. 2013<em>,</em> Article ID: 240568.</li> <li>ŞENOL ZM, ŞİMŞEK S. Removal of Pb2+ ions from aqueous medium by using chitosan-diatomite composite: equilibrium, kinetic and thermodynamic studies. <em>Journal of the Turkish Chemical Society Section A: Chemistry</em>. 2020;7(1):307-318.</li> <li>IPCS (International Programme on Chemical Safety). Chromium, Environmental Health Criteria, WHO, Geneva. 1998: 61.</li> <li>Pradhan D, Sukla LB, Sawyer M, Rahman PK. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. <em>Journal of Industrial and Engineering Chemistry</em>. 2017;55:1-20.</li> <li>Katz SA. The analytical biochemistry of chromium. <em>Environmental health perspectives</em>. 1991;92:13-6.</li> <li>Miretzky P, Cirelli AF. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. <em>Journal of hazardous materials</em>. 2010;180(1-3):1-9.</li> <li>Zhao Y, Yang S, Ding D, Chen J, Yang Y, Lei Z, Feng C, Zhang Z. Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. <em>Journal of colloid and interface science</em>. 2013;395:198-204.</li> <li>Al-Othman ZA, Ali R, Naushad M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. <em>Chemical Engineering Journal</em>. 2012;184:238-247.</li> <li>Babel S, Kurniawan TA. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. <em>Chemosphere</em>. 2004;54(7):951-967.</li> <li>IARC (International Agency for Research on Cancer), IARC monographs on the evaluation of carcinogenic risks to human: overall evaluation of carcinogenicity. An updating of IARC monographs, vols. 1-2, supplement 7, WHO, Lyon, France, 1987.</li> <li>Yang J, Yu M, Chen W. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. <em>Journal of industrial and engineering chemistry</em>. 2015;21:414-422.</li> <li>Zhao Z, An H, Lin J, Feng M, Murugadoss V, Ding T, Liu H, Shao Q, Mai X, Wang N, Gu H. Progress on the photocatalytic reduction removal of chromium contamination. <em>The Chemical Record</em>. 2019;19(5):873-82.</li> <li>Gupta S, Babu BV. Removal of toxic metal Cr (VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. <em>Chemical Engineering Journal</em>. 2009;150(2-3):352-365.</li> <li>Parlayici Ş, Pehlivan E. Comparative study of Cr (VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic. <em>Journal of Analytical Science and Technology</em>. 2019;10(1):1-8.</li> <li>Bayuo J, Pelig-Ba KB, Abukari MA. Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. <em>Applied Water Science</em>. 2019;9(4):1-11.</li> <li>Bhatnagar A, Kumar E, Sillanpää M. Fluoride removal from water by adsorption—a review. <em>Chemical engineering journal</em>. 2011;171(3):811-840.</li> <li>Hegazi HA. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. <em>HBRC journal</em>. 2013;9(3):276-82.</li> <li>Loganathan P, Vigneswaran S, Kandasamy J, Naidu R. Defluoridation of drinking water using adsorption processes. <em>Journal of hazardous materials</em>. 2013;248:1-9.</li> <li>Sharma PK, Ayub S, Tripathi CN. Isotherms describing physical adsorption of Cr (VI) from aqueous solution using various agricultural wastes as adsorbents. <em>Cogent Engineering</em>. 2016;3(1):1186857.</li> <li>Velazquez-Jimenez LH, Hurt RH, Matos J, Rangel-Mendez JR. Zirconium–carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr (IV) assembly and adsorption mechanism. <em>Environmental science &amp; technology</em>. 2014;48(2):1166-1174.</li> <li>Bello OS, Adegoke KA, Olaniyan AA, Abdulazeez H. Dye adsorption using biomass wastes and natural adsorbents: overview and future prospects. <em>Desalination and Water Treatment</em>. 2015;53(5):1292-1315.</li> <li>El-Hendawy ANA, Samara SE, Giris BS. Adsorption characteristics of activated carbons obtained from corncorbs. <em>Colloids and Surfaces A: Physicochemical and Engineering Aspects.</em> 2001:180:209-221.</li> <li>Nasri NS, Hamza UD, Ismail SN, Ahmed MM, Mohsin R. Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. <em>Journal of Cleaner Production</em>. 2014;71:148-157.</li> <li>Rai MK, Giri BS, Nath Y, Bajaj H, Soni S, Singh RP, Singh RS, Rai BN. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study. Journal of Water Supply: <em>Research and Technology-Aqua</em>. 2018;67(8):724-737.</li> <li>Labied R, Benturki O, Eddine Hamitouche AY, Donnot A. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study<em>. Adsorption Science &amp; Technology</em>. 2018;36(3-4):1066-99.</li> <li>Kannan A, Thambidurai S. Removal of hexavalent chromium from aqueous solution using activated carbon derived from palmyra palm fruit seed. <em>Bulletin of the Chemical Society of Ethiopia</em>. 2008;22(2):183-196.</li> <li>Mullick A, Moulik S, Bhattacharjee S. Removal of hexavalent chromium from aqueous solutions by low-cost rice husk-based activated carbon: kinetic and thermodynamic studies. <em>Indian Chemical Engineer</em>. 2018;60(1):58-71.</li> <li>Azaman SH, Afandi A, Hameed BH, Din AM. Removal of malachite green from aqueous phase using coconut shell activated carbon: Adsorption, desorption, and reusability studies. <em>Journal of Applied Science and Engineering</em>. 2018;21(3):317-330.</li> <li>Razavi Mehr M, Fekri MH, Omidali F, Eftekhari N, Akbari-adergani B. Removal of chromium (VI) from wastewater by palm kernel shell-based on a green method. <em>Journal of Chemical Health Risks</em>. 2019;9(1):75-86.</li> <li>Nethaji S, Sivasamy A. Removal of hexavalent chromium from aqueous solution using activated carbon prepared from walnut shell biomass through alkali impregnation processes. <em>Clean Technologies and Environmental Policy</em>. 2014;16(2):361-368.</li> <li>Enniya I, Rghioui L, Jourani A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. <em>Sustainable Chemistry and Pharmacy</em>. 2018;7:9-16.</li> <li>Dula T, Siraj K, Kitte SA. Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (<em>Oxytenanthera abyssinica</em>). <em>International Scholarly Research Notices</em>. 2014;2014.</li> <li>Pakade VE, Nchoe OB, Hlungwane L, Tavengwa NT. Sequestration of hexavalent chromium from aqueous solutions by activated carbon derived from Macadamia nutshells. <em>Water Science and Technology</em>. 2017;75(1):196-206.</li> <li>Yunusa U, Ibrahim MB. Reclamation of malachite green-bearing wastewater using desert date seed shell: adsorption isotherms, desorption and reusability studies. <em>Chemsearch Journal</em>. 2019;10(2):112-22.</li> <li>Yunusa U, Bishir U, Ibrahim MB. Kinetic and thermodynamic studies of malachite green adsorption using activated carbon prepared from desert date seed shell. <em>Algerian Journal of Engineering and Technology</em>. 2020;2:37-45.</li> <li>Wang X, Wang S, Yin X, Chen J, Zhu L. Activated carbon preparation from cassava residue using a two-step KOH activation: preparation, micropore structure and adsorption capacity. <em>Journal of Biobased Materials and Bioenergy.</em> 2014;8(1):35-42.</li> <li>Hameed BH, Din AM, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies<em>. Journal of hazardous materials</em>. 2007;141(3):819-825.</li> <li>Liu J, Li WY, Liu Y, Zeng Q, Hong S. Titanium (IV) hydrate based on chitosan template for defluoridation from aqueous solution. <em>Applied surface science</em>. 2014;293:46-54.</li> <li>Debnath S, Ghosh UC. Nanostructured hydrous titanium (IV) oxide: synthesis, characterization and Ni (II) adsorption behavior. <em>Chemical engineering journal</em>. 2009;152(2-3):480-491.</li> <li>Khan MM, Rahman MW, Ong HR, Ismail AB, Cheng CK. Tea dust as a potential low-cost adsorbent for the removal of crystal violet from aqueous solution. <em>Desalination and Water Treatment</em>. 2016;57(31):14728-38.</li> <li>Ali I, Peng C, Ye T, Naz I. Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. <em>RSC advances</em>. 2018;8(16):8878-8897.</li> <li>Baral SS, Das SN, Rath P. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. <em>Biochemical Engineering Journal</em>. 2006;31(3):216-222.</li> <li>Inam EI, Etim UJ, Akpabio EG, Umoren SA. Simultaneous adsorption of lead (II) and 3, 7-Bis (dimethylamino)-phenothiazin-5-ium chloride from aqueous solution by activated carbon prepared from plantain peels. <em>Desalination and Water Treatment</em>. 2016;57(14):6540-6553.</li> <li>Akar T, Tunali S. Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd (II) and Cu (II) ions from aqueous solutions. <em>Minerals Engineering</em>. 2005;18(11):1099-1109.</li> <li>Crini G, Peindy HN, Gimbert F, Robert C. Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. <em>Separation and Purification Technology</em>. 2007;53(1):97-110.</li> <li>Mohan D, Singh KP, Singh VK. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. <em>Journal of hazardous materials</em>. 2006;135(1-3):280-295.</li> <li>Hu Z, Lei L, Li Y, Ni Y. Chromium adsorption on high-performance activated carbons from aqueous solution. <em>Separation and Purification Technology</em>. 2003;31(1):13-18.</li> <li>Azizian S. Kinetic models of sorption: a theoretical analysis. <em>Journal of colloid and Interface Science</em>. 2004;276(1):47-52.</li> <li>Aksakal O, Ucun H. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. <em>Journal of hazardous materials</em>. 2010;181(1-3):666-672.</li> <li>McKay G, Ho YS, Ng JC. Biosorption of copper from waste waters: a review. <em>Separation and Purification Methods</em>. 1999;28(1):87-125.</li> <li>Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. <em>Process Safety and Environmental Protection</em>. 1998;76(2):183-191.</li> <li>Tewari N, Vasudevan P, Guha BK. Study on biosorption of Cr (VI) by Mucor hiemalis. <em>Biochemical Engineering Journal</em>. 2005;23(2):185-192.</li> <li>Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. <em>ACS applied materials &amp; interfaces</em>. 2012;4(11):5749-5760.</li> <li>Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. <em>Journal of the sanitary engineering division</em>. 1963;89(2):31-60.</li> <li>Bello OS, Ahmad MA. Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. <em>Separation Science and Technology</em>. 2012;47(6):903-912.</li> <li>Arami M, Limaee NY, Mahmoodi NM. Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. <em>Chemical Engineering Journal</em>. 2008;139(1):2-10.</li> <li>Gorzin F, Bahri Rasht Abadi MM. Adsorption of Cr (VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. <em>Adsorption Science &amp; Technology</em>. 2018;36(1-2):149-69.</li> <li>Boyd GE, Adamson AW, Myers JLS. The exchange of Ions from Aqueous Solution by Organic Zeolites, II: Kinetic. <em>Journal of the American Chemical Society,</em> 1947;69:2836-2848.</li> <li>Reichenberg D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. <em>Journal of the American Chemical Society</em>. 1953;75(3):589-97.</li> <li>Banerjee S, Sharma GC, Gautam RK, Chattopadhyaya MC, Upadhyay SN, Sharma YC. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. <em>Journal of Molecular Liquids</em>. 2016;213:162-172.</li> <li>Parashar K, Ballav N, Debnath S, Pillay K, Maity A. Hydrous TiO 2@ polypyrrole hybrid nanocomposite as an efficient selective scavenger for the defluoridation of drinking water. <em>RSC advances</em>. 2016;6(101):99482-99495.</li> <li>Banerjee S, Gautam RK, Jaiswal A, Chattopadhyaya MC, Sharma YC. Rapid scavenging of methylene blue dye from a liquid phase by adsorption on alumina nanoparticles. <em>RSC advances</em>. 2015;5(19):14425-14440.</li> <li>Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. <em>Separation and purification technology</em>. 2008;61(3):229-242.</li> <li>Kang HJ, Kim JH. Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto Sylopute. <em>Biotechnology and bioprocess engineering</em>. 2019;24(3):513-521.</li> <li>Lim YS, Kim JH. Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dehydroxybaccatin III from Taxus chinensis onto Sylopute. <em>The Journal of Chemical Thermodynamics</em>. 2017;115:261-268.</li> <li>Saha P, Chowdhury S. Insight into adsorption thermodynamics. <em>Thermodynamics</em>. 2011;16:349-64. Available from: <a href="http://www.intechopen.com/books/thermodynamics/">http://www.intechopen.com/books/thermodynamics/</a>insight into adsorption thermodynamics.</li> <li>Murphy V, Hughes H, McLoughlin P. Comparative study of chromium biosorption by red, green and brown seaweed biomass. <em>Chemosphere</em>. 2008;70(6):1128-1134.</li> <li>Nagashanmugam KB, Srinavasan K. Removal of chromium (VI) from aqueous solutions by chemically modified oil cake carbon. <em>Indian Journal of Chemical Technology.</em> 2011;18:207-219.</li> <li>Shahadat M, Isamil S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. <em>RSC advances</em>. 2018;8(43):24571-24587.</li> <li>Alemu A, Lemma B, Gabbiye N, Alula MT, Desta MT. Removal of chromium (VI) from aqueous solution using vesicular basalt: a potential low cost wastewater treatment system. <em>Heliyon</em>. 2018;4(7):e00682.</li> <li>Afkhami A, Saber-Tehrani M, Bagheri H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. <em>Desalination</em>. 2010;263(1-3):240-248.</li> <li>Lee SL, Park JH, Kim SH, Kang SW, Cho JS, Jeon JR, Lee YB, Seo DC. Sorption behavior of malachite green onto pristine lignin to evaluate the possibility as a dye adsorbent by lignin. <em>Applied Biological Chemistry</em>. 2019;62(1):1-0.</li> <li>Werkneh AA, Habtu NG, Beyene HD. Removal of hexavalent chromium from tannery wastewater using activated carbon primed from sugarcane bagasse: Adsorption/desorption studies. <em>American Journal of Applied Chemistry</em>. 2014;2(6):128-35.</li> </ol> Umar Yunusa Abdulrahman Ibrahim Kubo Yusuf Abdullahi Tahir Abdullahi Musa Husaini Copyright (c) https://creativecommons.org/licenses/by-nc/4.0 2021-02-16 2021-02-16 4 30 44 Geotechnical properties of some selected lateritic soils stabilized with cassava peel ash and lime http://jetjournal.org/index.php/ajet/article/view/50 <p>This study presents the influence of cassava peel ash (CPA) and lime on some geotechnical properties of three lateritic soils. This is with a view to the use of locally available agricultural waste in stabilising lateritic soils. Soil samples (termed A, B, and C) were collected from three different locations in Osun state, South West, Nigeria. Some properties such as particle size distribution, liquid limit (LL), plastic limit (PL), Compaction properties (optimum moisture content, OMC and Maximum dry density, MDD), California bearing ratio (CBR) and unconfined compressive strength (UCS) of the soil samples were determined. Cassava peel collected from a cassava processing factory was calcined at 700<sup>o</sup>C and CPA produced was sieved through sieve No. 40. Different percentages, 2, 4, 6, 8% (by weight of dry soil) of CPA and a fixed percentage (4%) of lime were mixed with the lateritic soil. Lime was added to supply calcium ion (Ca<sup>2+</sup>) needed for formation of Calcium Silicate stabilising compounds. The LL, PL, OMC, MDD, CBR and UCS of the stabilised soil samples were determined. There was a general improvement in the geotechnical properties of the soil (especially samples A and B) with about 20% reduction in LL, 38% increase in CBR, 120% increase in UCS. The study revealed that a combination of CPA and lime has the potential of improving the geotechnical properties of fine grained lateritic soil.</p> <p><a href="https://doi.org/10.5281/zenodo.4536448"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4536448.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Ayodele AL, Mgboh CV, Fajobi AB. Geotechnical properties of some selected lateritic soils stabilised with cassava peel ash and lime. <em>Alg. J. Eng. Tech. 2021</em>, 4:22-29. &nbsp;<a href="http://dx.doi.org/10.5281/zenodo.4536448">http://dx.doi.org/10.5281/zenodo.4536448</a></p> <p><strong>References</strong></p> <ol> <li>Murthy VNS. Textbook of Soil Mechanics and Foundation Engineering-Geotechnical Engineering Series. 1st ed. New Delhi: Pvt Ltd; 2007.</li> <li>O’Flaherty CA. Highways: The location, design and maintenance of road pavements. Butterworth Heinemenn, Jordan Hill Oxford; 2002.</li> <li>Ayodele AL. A study of Electrochemical Treatment of Typical Soft Lateritic Soil. [Ile-Ife]: Obafemi Awolowo University; 2014.</li> <li>Indiana Department of Transportation. Design Procedures for Soil Modification or Stabilisation. Office of Geotechnical Engineering 120 South Shortridge Road Indianapolis, Indiana 46219; 2008.</li> <li>Boardman D. Clay Lime Interaction. [Birmingham]: University of Birmingham; 1997.</li> <li>Osinubi KJ, Ijimdiya TS, Nmadu I. Lime stabilization of black cotton soil using bagasse ash as admixture. <em>Adv Mater Res</em>. 2009;62–64(February 2009):3–10.</li> <li>Ayodele AL, Adebisi AO, Kareem MA. Use of Sludge Ash in Stabilising Two Tropical Laterite. <em>Int J Sci Eng Res</em>. 2016;7(8):104–8.</li> <li>Ayodele AL, Agbede OA. Influence of electrochemical treatment on a typical laterite. <em>Proc Inst Civ Eng-Ground Improv</em>. 2018;171(2):103–11.</li> <li>Osinubi KJ. Soil stabilization using phosphatic waste.’. In: Proceedings 4th Regional Conference on Geotechnical Engineering, GEOTROPIKA. 1997. p. 225–44.</li> <li>Eko RM, Riskowski G. A procedure for processing mixtures of soil, cement, and sugar cane bagasse<em>. J Sci Res Dev</em>. 2004;3:1–5.</li> <li>Osinubi KJ, Eberemu AO. The use of blast furnace slag treated laterite in the attenuation of ground water contaminants. In: Proceedings of The Nigerian Material Congress 2005. 2005. p. 28–35.</li> <li>Alhassan M. Potentials of rice husk ash for soil stabilization. <em>Assumpt Univ J Technol</em>. 2008;11(4):246–50.</li> <li>Oriola F, Moses G. Groundnut shell ash stabilization of black cotton soil. <em>Electron J Geotech Eng</em>. 2010;15(1):415–28.</li> <li>Salau MA, Ikponmwosa EE, Olonode KA. Structural Strength Characteristics of Cement-Cassava Peel Ash Blended Concrete. <em>Civ Environ Res</em>. 2012;2(2):68–77.</li> <li>Adesanya OA, Oluyemi KA, Josiah SJ, Adesanya R, Shittu L, Ofusori D, et al. Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate<em>. Internet J Microbiol</em>. 2008;5(1):25–35.</li> <li>Ojo AO. Geomagnetic and Geoelectric Investigation of Mineral Rocks at Awo, osun Stat, Southwest Nigeria. <em>Int J Phys Res</em>. 2013;1(2):60–74.</li> <li>Ojanuga AG. Clay Mineralogy of Soils in the Nigeria Tropical Savanna Regions. <em>Soil Sci Soc Am J</em>. 1979;43(6):1237–42.</li> <li>Salau MA, Olonade KA. Pozzolanic potentials of cassava peel ash. <em>J Eng Res</em>. 2011;16(1):10–21.</li> <li>Bell FG. Lime Stabilisation of Clay Minerals and Soils. <em>Eng Geol</em>. 1996;42(4):223–37.</li> <li>Ogunribido THT. Geotechnical Properties of Saw Dust Ash Stabilized Southwestern Nigeria Lateritic Soils. <em>Environ Res Eng Manag</em>. 2012;2(60):29–33.</li> <li>Alao DA. Geology and engineering properties of laterites from Ilorin, Nigeria. <em>Eng Geol</em>. 1983;19(2):111–8.</li> <li>Glendinning S, Rogers CDF. Deep stabilisation using lime. In: Lime Stabilisation: Proceedings of the seminar held at Loughborough University Civil &amp; Building Engineering Department on 25 September 1996. Thomas Telford Publishing; 1996. p. 127–38.</li> <li>E. E. Agbenyeku, I. F. Aneke. Prolong Curing of Green Concrete from Domestically Dried Cassava Peel Ash and Laterite<em>. Int J Sci Eng Res</em>. 5(1):900–5.</li> <li>Gidigasu M. Laterite soil engineering: pedogenesis and engineering principles. Vol. 9. Amsterdam, Netherlands: Elsevier Scientific Publishing; 2012.</li> <li>Burmister DM. Principles and Techniques of Soil Identification. Vol. 29. Washington D.C.: National Research Council; 1950. 402–433 p.</li> <li>Cherian C, Arnepalli DN. A critical appraisal of the role of clay mineralogy in lime stabilisation. Int J Geosynth Ground Eng. 2015;1(8):1–20.</li> <li>Whitlow R. Basic Soil Mechanics. 3rd ed. Edinburgh Gate: Addison Wesley Longman Limited; 1995.</li> <li>Federal Ministry of works and Housing. Federal Republic of Nigeria Highway Manual, General Specifications Requirement for Roads and Bridges. 1997.</li> <li>Das BM. Fundamental of Geotechnical Engineering. 4th ed. USA: Thomson Learning; 2000.</li> <li>Bell F. Engineering treatment of soils. Abingdon, UK: CRC Press; 1993.</li> <li>Portelinha FHM. Modification of a Lateritic Soil with Lime and Cement: an Economic Alternative for Flexible Pavement Layers. <em>Soils Rocks</em>. 2012;35(1):51–63.</li> <li>Amu OO, Bamisaye OF, Komolafe IA. The Suitability and Lime Stabilization Requirement of some Lateritic Soil Samples as pavement. <em>Int J Pure Appl Sci Technol</em>. 2011;2(1):29–46.</li> <li>Serajuddin M, Azmal M. Fine-grained soils of Bangladesh for road construction. In: 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering. Bangkok; 1981. p. 175–8.</li> <li>Holtz RD, Kovacs WD. An Introduction to Geotechnical Engineering. New Jersey: Prentice-hall Inc.; 1981.</li> </ol> Adekemi Ayodele Chinedu Mgboh Adeyemi Fajobi Copyright (c) https://creativecommons.org/licenses/by-nc/4.0 2021-02-11 2021-02-11 4 22 29 Experimental and quantum chemical investigation for the single and competitive adsorption of cationic dyes onto activated carbon. http://jetjournal.org/index.php/ajet/article/view/47 <p>Single and competitive adsorption studies were performed to scrutinize the removal of two cationic dyes, namely, crystal violet (CV) and malachite green (MG) by adsorption onto activated carbon (BAC) derived from <em>Balanites aegyptiaca </em>seed shell. The BAC was characterized via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and pH of point of zero charge (pH<sub>pzc</sub>) analysis.&nbsp; The physicochemical parameters influencing the adsorption process, namely, pH, contact time, adsorbent weight, initial concentration, temperature and ionic strength were examined. Moreover, Density Functional Theory (DFT) studies were performed to investigate the chemical reactivity of the dye molecules. Experimental results indicated that maximum adsorption of both dyes was achieved at pH 8.0 and equilibrium was attained after contact time of 50 min for MG and 60 min for CV. The competitive adsorption results showed lower adsorption capacities as compared to the single adsorption results indicating antagonistic interaction. Isotherm and kinetic models were employed for fitting the experimental data. The sorption kinetics was found to obey the pseudo second order model. The equilibrium data suggests that Freundlich model could represent the dyes uptake onto the adsorbent. Thermodynamic analysis revealed that the adsorption is a spontaneous and endothermic process. The quantum chemical investigation performed on the tested dyes using DFT method have affirmed that the MG molecules are more reactive (∆E = 1.236 eV), electrophilic and have the capacity to adsorb strongly on the BAC surface compared to the CV (∆E = 1.476 eV). The results attested that BAC has great potential for cationic dyes adsorption from aqueous environment</p> <p><a href="https://doi.org/10.5281/zenodo.4504565"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4504565.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Yunusa U, Usman B, Ibrahim MB. Experimental and quantum chemical investigation for the single and competitive adsorption of cationic dyes onto activated carbon. &nbsp;<em>Alg. J. Eng. Tech. 2021</em>, 4:7-21. &nbsp;<em><a href="http://dx.doi.org/10.5281/zenodo.4504565">http://dx.doi.org/10.5281/zenodo.4504565</a></em></p> <p><strong>References</strong></p> <ol> <li>Sabna V, Thampi SG, Chandrakaran S. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. <em>Ecotoxicology and Environmental Safety</em>. 2016;134:390-397.</li> <li>Raval NP, Shah PU, Shah NK. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. <em>Applied Water Science</em>. 2017;7(7):3407-3445.</li> <li>Mashkoor F, Nasar A, Asiri AM. Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. <em>Scientific reports</em>. 2018;8(1):1-6.</li> <li>Mao J, Won SW, Min J, Yun YS. Removal of Basic Blue 3 from aqueous solution by Corynebacterium glutamicum biomass: Biosorption and precipitation mechanisms. <em>Korean Journal of Chemical Engineering</em>. 2008;25(5):1060-1064.</li> <li>Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: a review. <em>Environment international</em>. 2004;30(7):953-971.</li> <li>Li W, Ma Q, Bai Y, Xu D, Wu M, Ma H. Facile fabrication of gelatin/bentonite composite beads for tunable removal of anionic and cationic dyes. <em>Chemical Engineering Research and Design</em>. 2018;134:336-346.</li> <li>Wang Y, Yang R, Li M, Zhao Z. Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. <em>Industrial Crops and Products</em>. 2015;65:216-226.</li> <li>Xiong W, Zeng Z, Li X, Zeng G, Xiao R, Yang Z, Zhou Y, Zhang C, Cheng M, Hu L, Zhou C. Multi-walled carbon nanotube/amino-functionalized MIL-53 (Fe) composites: remarkable adsorptive removal of antibiotics from aqueous solutions. <em>Chemosphere</em>. 2018;210:1061-1069.</li> <li>Ahmad MA, Afandi NS, Adegoke KA, Bello OS. Optimization and batch studies on adsorption of malachite green dye using rambutan seed activated carbon. <em>Desalination and Water treatment</em>. 2016;57(45):21487-21511.</li> <li>Ali I, Peng C, Khan ZM, Sultan M, Naz I, Ali M, Farid HU, Mahmood MH, Ahsen R. Removal of Crystal Violet and Eriochrome Black T Dye from Aqueous Solution by Magnetic Nanoparticles Biosynthesized from Leaf Extract of Fraxinus Chinensis Roxb. <em> J. Environ. Stud</em>. 2019;28(4):2027-2040.</li> <li>Shan RR, Yan LG, Yang YM, Yang K, Yu SJ, Yu HQ, Zhu BC, Du B. Highly efficient removal of three red dyes by adsorption onto Mg–Al-layered double hydroxide. <em>Journal of Industrial and Engineering Chemistry</em>. 2015;21:561-568.</li> <li>Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Ju YH, Ismadji S. Removal of crystal violet dye by adsorption using bentonite–alginate composite. <em>Journal of Environmental Chemical Engineering</em>. 2017;5(6):5677-5687.</li> <li>Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke EA. Carbon materials in environmental applications. <em>Chemistry and physics of carbon</em>. 2001:1-66.</li> <li>Netzahuatl-Muñoz AR, del Carmen Cristiani-Urbina M, Cristiani-Urbina E. Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies. <em>PLoS One</em>. 2015;10(9):e0137086.</li> <li>Yunusa U, Ibrahim MB. Reclamation of malachite green-bearing wastewater using desert date seed shell: adsorption isotherms, desorption and reusability studies. <em>Chemsearch Journal</em>. 2019;10(2):112-122.</li> <li>Giwa SO, Moses JS, Adeyi AA, Giwa A. Adsorption of atrazine from aqueous solution using desert date seed shell activated carbon. <em>Journal of Engineering Research and Development</em>. 2018;1(3):317-325.</li> <li>Yunusa U, Bishir U, Ibrahim MB. Kinetic and thermodynamic studies of malachite green adsorption using activated carbon prepared from desert date seed shell. <em>Algerian Journal of Engineering and Technology</em>. 2020;2:37-45.</li> <li>Sharma S, Duggal V, Srivastava AK, Mehra R. Assessment of radiation dose from exposure to radon in drinking water from Western Haryana, India. <em>International Journal of Environmental Research</em>. 2017;11(2):141-147.</li> <li>El Kassimi A, Boutouil A, El Himri M, Laamari MR, El Haddad M. Selective and competitive removal of three basic dyes from single, binary and ternary systems in aqueous solutions: A combined experimental and theoretical study. <em>Journal of Saudi Chemical Society</em>. 2020;24(7):527-544.</li> <li>Rotaru I, Varvara S, Gaina L, Muresan LM. Theoretical, thermodynamic and electrochemical analysis of biotin drug as impending corrosion inhibitor for mild steel in in 15% hydrochloric acid. <em> Surf. Sci</em>. 2014.321:188-196.</li> <li>Wang X, Wang S, Yin X, Chen J, Zhu L. Activated carbon preparation from cassava residue using a two-step KOH activation: preparation, micropore structure and adsorption capacity. <em>Journal of Biobased Materials and Bioenergy</em>. 2014;8(1):35-42.</li> <li>Bakatula EN, Richard D, Neculita CM, Zagury GJ. Determination of point of zero charge of natural organic materials. <em>Environmental Science and Pollution Research</em>. 2018;25(8):7823-7833.</li> <li>Ouasfi N, Zbair M, Bouzikri S, Anfar Z, Bensitel M, Ahsaine HA, Sabbar E, Khamliche L. Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. <em>RSC advances</em>. 2019;9(17):9792-9808.</li> <li>Ali I, Peng C, Ye T, Naz I. Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. <em>RSC advances</em>. 2018;8(16):8878-8897.</li> <li>Giwa AA, Oladipo MA, Abdulsalam KA. Adsorption of Rhodamine B from single, binary and ternary dye systems using sawdust of Parkia biglobosa as adsorbent: isotherm, kinetics and thermodynamics studies. <em>Journal of Chemical and Pharmaceutical Research</em>. 2015;7(2):454-475.</li> <li>Istratie R, Stoia M, Păcurariu C, Locovei C. Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. <em>Arabian Journal of Chemistry</em>. 2019;12(8):3704-3722.</li> <li>Mahaninia MH, Rahimian P, Kaghazchi T. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution. <em>Chinese Journal of Chemical Engineering</em>. 2015;23(1):50-56.</li> <li>Mokkapati RP, Mokkapati J, Ratnakaram VN. Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor. <em>Polish Journal of Chemical Technology</em>. 2016;18(2):68-77.</li> <li>Lagergren SK. About the theory of so-called adsorption of soluble substances. <em> Vetenskapsakad. Handingarl</em>. 1898;24:1-39.</li> <li>Ho YS, McKay G. Pseudo-second order model for sorption processes. <em>Process biochemistry.</em> 1999;34(5):451-65.</li> <li>Luo X, Zhang Z, Zhou P, Liu Y, Ma G, Lei Z. Synergic adsorption of acid blue 80 and heavy metal ions (Cu2+/Ni2+) onto activated carbon and its mechanisms. <em>Journal of Industrial and Engineering Chemistry</em>. 2015;27:164-74.</li> <li>Banerjee S, Sharma GC, Gautam RK, Chattopadhyaya MC, Upadhyay SN, Sharma YC. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. <em>Journal of Molecular Liquids</em>. 2016;213:162-172.</li> <li>Doke KM, Yusufi M, Joseph RD, Khan EM. Comparative adsorption of crystal violet and congo red onto ZnCl2 activated carbon. <em>Journal of Dispersion Science and Technology</em>. 2016;37(11):1671-1681.</li> <li>Ahmad MA, Ahmad N, Bello OS. Adsorptive removal of malachite green dye using durian seed-based activated carbon. <em>Water, Air, &amp; Soil Pollution</em>. 2014;225(8):1-8.</li> <li>Wanyonyi WC, Onyari JM, Shiundu PM. Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies. <em>Energy Procedia</em>. 2014;50:862-869.</li> <li>Inam EI, Etim UJ, Akpabio EG, Umoren SA. Simultaneous adsorption of lead (II) and 3, 7-Bis (dimethylamino)-phenothiazin-5-ium chloride from aqueous solution by activated carbon prepared from plantain peels. <em>Desalination and Water Treatment</em>. 2016;57(14):6540-6553.</li> <li>Cheruiyot GK, Wanyonyi WC, Kiplimo JJ, Maina EN. Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. <em>Scientific African</em>. 2019;5:e00116.</li> <li>Mahmoodi NM. Synthesis of core–shell magnetic adsorbent nanoparticle and selectivity analysis for binary system dye removal. <em>Journal of Industrial and Engineering Chemistry</em>. 2014;20(4):2050-2058.</li> <li>Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. <em>ACS applied materials &amp; interfaces</em>. 2012;4(11):5749-5760.</li> <li>Shee A, Onyari JM, Wabomba JN, Munga D. Methylene blue adsorption onto coconut husks/polylactide blended films: equilibrium and kinetic studies. <em>Chem Mater Res</em>. 2014;6:28-38.</li> <li>Chieng HI, Lim LB, Priyantha N. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. <em>Environmental technology</em>. 2015;36(1):86-97.</li> <li>Duran C, Ozdes D, Gundogdu A, Senturk HB. Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent<em>. Journal of Chemical &amp; Engineering Data</em>. 2011;56(5):2136-2147.</li> <li>Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. <em>Journal of the American chemical society</em>. 1916;38(11):2221-2295.</li> <li>Freundlich H. Über die adsorption in lösungen. <em>Zeitschrift für physikalische Chemie</em>. 1907;57(1):385-470.</li> <li>Sahbaz DA, Dandil S, Acikgoz C. Removal of crystal violet dye by a novel adsorbent derived from waste active sludge used in wastewater treatment. <em>Water Quality Research Journal</em>. 2019;54(4):299-308.</li> <li>Saechiam S, Sripongpun G. Adsorption of malachite green from synthetic wastewater using banana peel adsorbents. <em>Songklanakarin Journal of Science &amp; Technology</em>. 2019;41(1):21-29.</li> <li>Prasanthi MR, Jayasravanthi M, Nadh RV. Kinetic, thermodynamic and equilibrium studies on removal of hexavalent chromium from aqueous solutions using agro-waste biomaterials, casuarina equisetifolia L. and sorghum bicolor. <em>Korean Journal of Chemical Engineering</em>. 2016;33(8):2374-2383.</li> <li>Collins ON, Elijah OC. ADSORPTION OF A DYE (CRYSTAL VIOLET) ON AN ACID MODIFIED NON-CONVENTIONAL ADSORBENT. <em>Journal of Chemical Technology &amp; Metallurgy</em>. 2019;54(1):95-110.</li> <li>Ahmad MA, Afandi NS, Adegoke KA, Bello OS. Optimization and batch studies on adsorption of malachite green dye using rambutan seed activated carbon. <em>Desalination and Water treatment</em>. 2016;57(45):21487-21511.</li> <li>Dallel R, Kesraoui A, Seffen M. Biosorption of cationic dye onto" Phragmites australis" fibers: Characterization and mechanism. <em>Journal of environmental chemical engineering</em>. 2018;6(6):7247-7256.</li> <li>Laskar N, Kumar U. Adsorption of crystal violet from wastewater by modified bambusa tulda. <em>KSCE Journal of Civil Engineering</em>. 2018;22(8):2755-2763.</li> <li>Reis HC, Cossolin AS, Santos BA, Castro KC, Pereira GM, Silva VC, Sousa PT, Dall’Oglio EL, Vasconcelos LG, Morais EB. Malt bagasse waste as biosorbent for malachite green: an ecofriendly approach for dye removal from aqueous solution. <em>International Journal of Biotechnology and Bioengineering</em>. 2018;12(4):118-126.</li> <li>Chen B, Yue W, Zhao H, Long F, Cao Y, Pan X. Simultaneous capture of methyl orange and chromium (VI) from complex wastewater using polyethylenimine cation decorated magnetic carbon nanotubes as a recyclable adsorbent. <em>RSC advances</em>. 2019;9(9):4722-4734.</li> <li>Wang F, Pan Y, Cai P, Guo T, Xiao H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. <em>Bioresource technology</em>. 2017;241:482-490.</li> <li>Chan LS, Cheung WH, Allen SJ, McKay GJ. Equilibrium adsorption isotherm study of binary basic dyes on to bamboo derived activated carbon. <em>HKIE transactions</em>. 2017;24(4):182-192.</li> <li>Mavinkattimath RG, Kodialbail VS, Govindan S. Simultaneous adsorption of Remazol brilliant blue and Disperse orange dyes on red mud and isotherms for the mixed dye system. <em>Environmental Science and Pollution Research</em>. 2017;24(23):18912-18925.</li> <li>Regti A, El Kassimi A, Laamari MR, El Haddad M. Competitive adsorption and optimization of binary mixture of textile dyes: A factorial design analysis. <em>Journal of the Association of Arab Universities for Basic and Applied Sciences</em>. 2017;24:1-9.</li> <li>Tovar-Gómez R, del Rosario Moreno-Virgen M, Moreno-Pérez J, Bonilla-Petriciolet A, Hernández-Montoya V, Durán-Valle CJ. Analysis of synergistic and antagonistic adsorption of heavy metals and acid blue 25 on activated carbon from ternary systems. <em>Chemical Engineering Research and Design</em>. 2015;93:755-772.</li> <li>Girish CR. Simultaneous adsorption of pollutants onto the adsorbent review of interaction mechanism between the pollutants and the adsorbent. <em> J. Eng. Technol</em>. 2018;7:3613-3622.</li> <li>Singh N, Balomajumder C. Biosorption of Phenol and Cyanide from Synthetic/Simulated Wastewater by Sugarcane Bagasse—Equilibrium Isotherm and Kinetic Analyses. <em>Water Conservation Science and Engineering</em>. 2017;2(1):1-4.</li> <li>Adeyi AA, Jamil SN, Abdullah LC, Choong TS, Lau KL, Abdullah M. Simultaneous adsorption of cationic dyes from binary solutions by Thiourea-Modified Poly (acrylonitrile-co-acrylic acid): detailed isotherm and kinetic studies. <em>Materials</em>. 2019;12(18):2903.</li> <li>El Haouti R, Ouachtak H, El Guerdaoui A, Amedlous A, Amaterz E, Haounati R, Addi AA, Akbal F, El Alem N, Taha ML. Cationic dyes adsorption by Na-Montmorillonite Nano Clay: Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. <em>Journal of Molecular Liquids</em>. 2019;290:111139.</li> <li>Regti A, El Ayouchia HB, Laamari MR, Stiriba SE, Anane H, El Haddad M. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters. <em>Applied Surface Science</em>. 2016;390:311-9.</li> <li>Guediri A, Bouguettoucha A, Chebli D, Chafai N, Amrane A. Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid. <em>Journal of Molecular Structure</em>. 2020;1202:127290.</li> <li>Suganthi S, Balu P, Sathyanarayanamoorthi V, Kannappan V, Kamil MM, Kumar R. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic. <em>Journal of Molecular Structure</em>. 2016;1108:1-5.</li> <li>de Souza TN, de Carvalho SM, Vieira MG, da Silva MG, Brasil DD. Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. <em>Applied Surface Science.</em> 2018;448:662-670.</li> <li>Odoemelam SA, Emeh UN, Eddy NO. Experimental and computational chemistry studies on the removal of methylene blue and malachite green dyes from aqueous solution by neem (Azadirachta indica) leaves. <em>Journal of Taibah University for Science</em>. 2018;12(3):255-265.</li> </ol> Umar Yunusa Bishir Usman Muhammad Bashir Ibrahim Copyright (c) 2021 https://creativecommons.org/licenses/by-nc/4.0 2021-02-04 2021-02-04 4 7 21 Experimental study of ECG signal transmission system via a coaxial cable line using Duty-Cycle Modulation http://jetjournal.org/index.php/ajet/article/view/90 <p style="text-align: justify;">This paper presents the first real and well tested prototyping duty cycle modulation (DCM) signal transmission system. The experimented system is applied to the transmission of ECG signals. It consists of an ECG signal acquisition system, a duty cycle modulation transmitter, a coaxial cable transmission medium and finally a simple low-pass filter as receiver. After a brief review of the literature highlighting the interest of this experiment, we analytically developed different parts of the proposed system. The experimental workbench and main results obtained are presented. These yield very good results since in addition to the high quality of ECG signal reconstitution, we manage to eliminate the power line interference induced during transmission. These results experimentally confirm the feasibility as well as new perspectives of using the proposed systems as a simple remote biomedical instrument.</p> <p><a href="https://doi.org/10.5281/zenodo.4488389"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4488389.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Nguefack LT, Paune F, Mbihi J. Experimental study of ECG signal transmission system via a coaxial cable line using Duty-Cycle Modulation. <em>Alg. J. Eng. Tech. 2021</em>; 4:1-6. <em><a href="http://dx.doi.org/10.5281/zenodo.4488389">http://dx.doi.org/10.5281/zenodo.4488389</a></em></p> <p><strong>References</strong></p> <ol> <li style="text-align: justify;">Engin M, Çağlav E, Engin EZ. Real-time ECG signal transmission via telephone network. <em>Measurement</em>. 2005;37(2):167-171.</li> <li style="text-align: justify;">Penmatsa PL, Reddy DVRK. Smart Detection and Transmission of Abnormalities in ECG via Bluetooth. In: 2016 IEEE International Conference on Smart Cloud (SmartCloud). 2016; 41-44.</li> <li style="text-align: justify;">Li N, Liu Y, Zhang G, Du H, Yang Y, Jiang X, et al. Design of Portable Wireless Electrocardiogram Monitoring System. In: Journal of Physics: Conference Series. IOP Publishing; 2020.</li> <li style="text-align: justify;">Güler NF, Fidan U. Wireless Transmission of ECG signal. <em>J Med Syst</em>. 2006;30(3):231-235.</li> <li style="text-align: justify;">Eşme E, Ünsaçar F. DESIGN OF REMOTE CONTROLLED HEART MONITORING SYSTEM. LIFE. <em>International Journal of Health and Life-Sciences</em>. 2019;5(1).</li> <li style="text-align: justify;">He Q, Wang J, Zhao G, Chen D, Ju Y, Zhao K. The Implementation of ECG Monitoring Medical System based on Mobile Platform. <em>Journal of Physics: Conference Series. IOP Publishing</em>. 2019: 032-055.</li> <li style="text-align: justify;">Jenkal W, Latif R, Toumanari A, Dliou A, El B’charri O, Maoulainine FM. An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. <em>Biocybernetics and Biomedical Engineering</em>. 2016;36(3):499-508.</li> <li style="text-align: justify;">Nneme LN, Lonla BM, Sonfack GB, Mbihi J. Review of a Multipurpose Duty-Cycle Modulation Technology in Electrical and Electronics Engineering. <em>Journal of Electrical Engineering, Electronics, Control and Computer Science</em>. 2018;4(2):9-18.</li> <li style="text-align: justify;">Mbihi J, Nneme LN. A Multi-Channel Analog-To-Digital Conversion Technique Using Parallel Duty-Cycle Modulation. 2012.</li> <li style="text-align: justify;">Béatrice SG, Jean M. FPGA-Based Analog-to-Digital Conversion via Optimal Duty-Cycle Modulation. <em>Electrical and Electronic Engineering.</em> 2018;8(2):29-36.</li> <li style="text-align: justify;">Moffo BL, Mbihi J, Nneme LN, Kom M. A novel digital-to-analog conversion technique using duty-cycle modulation. 2013;7(1):8.</li> <li style="text-align: justify;">Lonla Moffo B, Mbihi J. A Novel Digital Duty-Cycle Modulation Scheme for FPGA-Based Digital-to-Analog Conversion. <em>IEEE Transactions on Circuits and Systems II: Express Briefs</em>. 2015;62(6):543-547.</li> <li style="text-align: justify;">Lonla BM, Mbihi J, Nneme LN. FPGA-Based Multichannel Digital Duty-Cycle Modulation and Application to Simultaneous Generation of Analog Signals. <em>STM Journal of Electronic Design Technology (JoEDT)</em>. 2017;8(1):23-35.</li> <li style="text-align: justify;">Paulin DSY, Jean M, Djalo H, Joseph E. Virtual Digital Control Scheme for a Duty-Cycle Modulation Boost Converter. <em>Journal of Computer Science and Control Systems</em>. 2017;10(2):22-27.</li> <li style="text-align: justify;">MBIHI J, NNEME NNEME L. A novel control scheme for buck power converters using duty-cycle modulation. Int j power electron (Print). 2013;5(3-4):185-99.</li> <li style="text-align: justify;">Biyobo AO, Nneme LN, Mbihi J. A novel sine duty cycle modulation control scheme for photovoltaic single phase power inverters. <em>WSEAS Transactions on Circuits and Systems</em>. 2018;17:107-113.</li> <li style="text-align: justify;">Mbihi J. Dynamic Modelling and Virtual Simulation of Digital Duty-Cycle Modulation Control Drivers<em>. International Journal of Electrical and Computer Engineering</em>. 2017;11(4):6.</li> <li style="text-align: justify;">Otam US, Moffo BL, Ngounou CERG, Mbihi J. A novel FPGA-Based Multi-Channel Signal Acquisition System Using Parallel Duty-Cycle Modulation and Application to Biologic Signals: Design and Simulation. <em>Journal of Electrical Engineering, Electronics, Control and Computer Science.</em> 2020;7(2):13-20.</li> <li style="text-align: justify;">Nguefack LT, Pauné F, Kenfack GW, Mbihi J. A Novel Optical Fiber Transmission System Using Duty-Cycle Modulation and Application to ECG Signal: Analog Design and Simulation. <em>Journal of Electrical Engineering, Electronics, Control and Computer Science.</em> 2020;6(3):39-48.</li> <li style="text-align: justify;">Turner J, Zellner C, Khan T, Yelamarthi K. Continuous heart rate monitoring using smartphone. <em>IEEE International Conference on Electro Information Technology</em> (EIT). 2017:324-326.</li> <li style="text-align: justify;">Prasad AS, Kavanashree N. ECG Monitoring System Using AD8232 Sensor. <em>International Conference on Communication and Electronics Systems (ICCES).</em> 2019: 976-980.</li> <li style="text-align: justify;">Mbihi J, Ndjali B, Mbouenda M. Modelling and simulation of a class of duty-cycle modulators for industrial instrumentation. 2005.</li> <li style="text-align: justify;">Mbihi J, Ndjali Beng F, kom martin, Nneme Nneme L. A Novel Analog-to-digital conversion Technique using nonlinear duty-cycle modulation. <em>International Journal of Electronics and Computer Science Engineering</em>. 2013;7.</li> <li style="text-align: justify;">Nneme LN, Mbihi J. Modeling and Simulation of a New Duty-Cycle Modulation Scheme for Signal Transmission Systems. <em>American Journal of Electrical and Electronic Engineering</em>. 2014;2(3):82-87.</li> <li style="text-align: justify;">Fliess M, Martin P, Petit N, Rouchon P. Commande de l’équation des télégraphistes et restauration active d’un signal. Traitement du Signal. 1998;15(6):619-625.</li> <li style="text-align: justify;">Nneme LN, Mbihi J. Modeling and Simulation of a New Duty-Cycle Modulation Scheme for Signal Transmission Systems. <em>American Journal of Electrical and Electronic Engineering</em>. 2014;2(3):82-87.</li> <li style="text-align: justify;">Moffo BL, Mbihi J, Nneme LN. A Low Cost and High Quality Duty-Cycle Modulation Scheme and Applications. <em>INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING</em>. 2014;8(3):7.</li> <li style="text-align: justify;">Thakor NV, Webster JG, Tompkins WJ. Estimation of QRS Complex Power Spectra for Design of a QRS Filter. <em>IEEE Transactions on Biomedical Engineering</em>. 1984;BME-31(11):702-706.</li> </ol> Laurel TATOU NGUEFACK Félix PAUNE Jean MBIHI Copyright (c) 2021 https://creativecommons.org/licenses/by-nc/4.0 2021-02-01 2021-02-01 4 1 6 An overview on use of renewable solar energy in desiccant based thermal cooling systems http://jetjournal.org/index.php/ajet/article/view/20 <p>The use of thermal energy produced by renewable solar heat is an interesting option for desiccant regeneration in comfort space cooling system. Various options available for collecting the solar radiations to provide reactivation heat for desiccant regeneration in desiccant assisted dehumidification and cooling system. This means of thermal cooling is economically viable as well as environment friendly. The integration of different solar collectors with the desiccant cooling cycle is resulted to the green cooling as it eliminates the use of CFC based ozone depleting refrigerants and CO<sub>2</sub> as green house gases which is responsible for global warming. An overview is presented to introduce different configurations of the combined system and performance evaluation of the same under different climatic situations.</p> <p><a href="https://doi.org/10.5281/zenodo.4403022"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4403022.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Jani DB. An overview on use of renewable solar energy in desiccant based thermal cooling systems. <em>Alg. J. Eng. Tech</em>. 2020; 3: 038-042. <em><a href="http://dx.doi.org/10.5281/zenodo.4403022">http://dx.doi.org/10.5281/zenodo.4403022</a></em></p> <p>References</p> <ol> <li>Jurinak, J. J., Mitchell, J. W., and Beckman, W. A. Open-cycle desiccant air conditioning as an alternative to vapor compression cooling in residential applications. <em>Journal of Solar Energy Engineering</em> 1984;106:252-260.</li> <li>Jurinak, J.J. Open cycle solid desiccant cooling- components models and system simulation. <em>PhD thesis</em>, Wisconsin, Madison, USA.</li> <li>Stabat, P. Modelisation de components de systems de climatisation mettant en oeuvre l’adsorption et l’evaporation d’eau. <em>PhD thesis</em>, Ecole des Mines, Paris.</li> <li>Kang, T.S., and Maclaine-cross, I.L. High performance solid desiccant open cooling cycles. <em>Journal of Solar Energy Engineering</em> 1989;111:176-183.</li> <li>Lavan, Z., Monnier, J.B., and Worek, W.M. Second law analysis of desiccant cooling systems. <em>Journal of Solar Energy Engineering</em> 1982;104:229-236.</li> <li>Pons, M., and Kodama, A. Entropic analysis of adsorption open cycles for air conditioning. Part I: first and second law analysis. <em>International Journal of Energy Research</em> 2000;24:251-262.</li> <li>Maalouf, C., Wurtz, E., Mora, L., and Allard, F. <em>Optimization and study of autonomous solar desiccant cooling system</em>. Palenc, Santorini, Greece.</li> <li>Maalouf, C. Etude du potential de rafraichssement passif par desiccantion avec regeneration par panneaux solarires, <em>PhD thesis</em>, La Rochelle.</li> <li>Henning, H.M., Erpenbeck, T., Hingenburg, C., and Santamaria, I.S. The potential for solar energy use in desiccant cooling cycles. <em>International journal of Refrigeration</em> 2001;24:220-229.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2017). A critical review on solid desiccant based hybrid cooling systems. <em>International Journal of Air-conditioning and Refrigeration</em> 25, 1-10.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). A critical review on application of solar energy as renewable regeneration heat source in solid desiccant – vapor compression hybrid cooling system. <em>Journal of Building Engineering</em> 18, 107-124.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). Performance analysis of a solid desiccant assisted hybrid space cooling system using TRNSYS. <em>Journal of Building Engineering</em> 19, 26-35.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). Investigations on effect of operational conditions on performance of solid desiccant based hybrid cooling system in hot and humid climate. <em>Thermal Science and Engineering Progress</em> 7, 76-86.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). <em>Applications of solar energy</em>. Springer, Singapore, ISBN 978-981-10-7205-5.</li> <li>Dadi, M.J., Jani, D.B. (2019). Solar Energy as a Regeneration Heat Source in Hybrid Solid Desiccant – Vapor Compression Cooling System – A Review. <em>Journal of Emerging Technologies and Innovative Research</em> 6 (5), 421-425.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2016). Solid desiccant air conditioning – A state of the art review. <em>Renewable and Sustainable Energy Reviews</em> 60, 1451–1469.</li> <li>Jani, D.B., Shah, N., Panchal, N. A review on application of desiccant dehumidification – vapor compression hybrid cooling system in hot-humid climates. <em>International Journal of Innovative and Emerging Research in Engineering</em> 2;2018:1-5.</li> <li>Jani, D.B., Bhabhor, K., Dadi, M., et al. A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle. <em>Journal of Thermal Analysis and Calorimetry</em> 2019;DOI:10.1007/s10973-019-08968.</li> <li>Bhabhor, K., Jani, D.B. Progressive development in solid desiccant cooling: A review. <em>International Journal of Ambient Energy</em> 2019;DOI:10.1080/01430750.2019.1681293.</li> <li>Matsuki, K., Saito, Y. Desiccant cooling R and D in Japan. <em>ASHRAE Transaction Symposia</em> 0877;DA: 77:1:426-40.</li> <li>Hajji A, Worek WM, Levan Z. Dynamic analysis of closed-cycle solar adsorption refrigerator using two adsorbent-adsorbate pairs. <em>ASME journal of Solar Energy Engineering</em> 1991;113-73-9.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network. <em>Applied Thermal Engineering</em> 98:1091–1103.</li> <li>Biswas P, Kim S, Miller A. A compact low pressure drop desiccant bed for solar air conditioning application: analysis and design. <em>ASME Journal of Solar Energy Engineering</em> 1984;106:153.</li> <li>Jani, D.B., M. Mishra, and P.K. Sahoo. 2015. Performance studies of hybrid solid desiccant - vapor compression air-conditioning system for hot and humid climates. <em>Energy and Buildings</em> 102:284-292.</li> <li>Duffie JA, Beckmann WA. Solar Engineering of Thermal Process. New York: Wiley, 1980.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Performance prediction of solid desiccant - vapor compression hybrid air-conditioning system using artificial neural network. <em>Energy</em> 103: 618-629.</li> <li>Saito Y. Regeneration characteristics of adsorbent in the integrated desiccant/collector. <em>ASME</em> <em>Journal of Solar Energy Engineering</em> 1993;115:169-75.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Experimental investigation on solid desiccant – vapor compression hybrid air- conditioning system in hot and humid weather. <em>Applied Thermal Engineering</em> 104:556–564.</li> <li>Henning, H.M. (2001). The potential of solar energy use in desiccant cooling cycles. <em>International Journal of Refrigeration</em> 24 (3), 220–229.</li> <li>Vyas, Vedant, D.B. Jani. 2016. An overview on application of solar thermal power generation. <em>International Journal of Engineering Research and Allied Sciences</em> 01:1-5.</li> <li>Crofoot, L., and Harrison, S. (2012). Performance evaluation of a liquid desiccant solar air conditioning system. <em>Energy Procedia</em> 30, 542–550.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Exergy analysis of solid desiccant - vapor compression hybrid air conditioning system. <em>International Journal of Exergy</em> 20:517-535.</li> <li>Buker, M.S., and Riffat, S.B. (2015). Recent developments in solar assisted liquid desiccant evaporative cooling technology review. <em>Energy and Buildings</em> 96, 95–108.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2013. Simulation of solar assisted solid desiccant cooling systems using TRNSYS. <em>Proceedings of the 22<sup>th</sup> National and 11<sup>th</sup> International ISHMT-ASME Heat and Mass Transfer Conference (ISHMT-ASME-2013)</em>, IIT, Kharagpur, Dec 28-31, pp. 1-7.</li> <li>Vyas, Vedant, D.B. Jani, P.K. Brahmbhatt. 2016. A comprehensive study on application of renewable solar energy in thermal power generation. <em>National Conference on Emerging Research Trends in Engineering (NCERTE-2016), VGEC Chandkheda, Institute for Plasma Research (IPR) and CTE Gandhinagar, Ahmedabad</em>, Apr 4-6, pp. 620-625.</li> <li>Baniyounes, A.M., Rasul, G.L., and Khan, MMM. Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia. <em>Renewable and Sustainable Energy Reviews</em> 2012;16:6423-6431.</li> <li>Li, Y., Lu, L., and Yang, H. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air conditioning system for application in Hong Kong. <em>Solar Energy</em> 2010;84:2085-2095.</li> </ol> D.B. Jani Copyright (c) 2020 Algerian Journal of Engineering and Technology https://creativecommons.org/licenses/by-nc/4.0 2020-12-28 2020-12-28 4 038 042