Algerian Journal of Engineering and Technology http://jetjournal.org/index.php/ajet <p>Algerian Journal of Engineering and Technology (AJET) is an international scholarly refereed research journal which aims to promote the theory and practice of technology, innovation, and engineering.</p> Faculty of Technology, University of Echahid Hamma Lakhdar, El-Oued, Algeria. en-US Algerian Journal of Engineering and Technology Study of corrosion inhibition performance of Glutaraldehyde on Aluminium in nitric acid solution http://jetjournal.org/index.php/ajet/article/view/18 <p style="text-align: justify;">The inhibition effect of glutaraldehyde on the corrosion behavior of aluminium in 1.4 M nitric acid solution was studied using weight loss method, adsorption studies and characterized instrumentally by Fourier Transform Infrared Spectroscopic (FT-IR) analysis. The effects of inhibitor concentration, temperature and surface coverage were all investigated. The effect of inhibitor concentration and other parameters were evaluated for different inhibitor concentrations and the probable mechanism for the studied inhibitor was also proposed. The results showed that glutaraldehyde possess an excellent inhibiting effect toward the corrosion of aluminium in nitric acid solution with highest inhibition efficiency of 84.68, 81.34 and 76.87 % at 308, 313 and 318 K in the presence of 0.1 M inhibitor concentration. The values of the activation energy, rate constant, half-life and rate constant in uninhibited acid solution were 31.84 kj mol-1, 3.9 k ×10-3 hr-1 and 1.76 × 102 hr which changed to 57.64 kj mol-1, 0.60 k ×10-3 hr-1 and 11.55 hr in the presence of 0.1 M inhibitor concentration. The positive values of enthalpy reflect the endothermic nature of the reaction. The negative values of entropy (ΔS) signified that the activated complex in the rate determining step represented an association, rather than dissociation. The adsorption of the inhibitor on the metal surface followed Langmuir adsorption isotherm.</p> <p style="text-align: justify;"><em><a href="https://doi.org/10.5281/zenodo.3923029"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3923029.svg" alt="DOI"></a></em></p> <p><strong>Cite as:</strong>Husaini M, Usman B, Ibrahim MB. Study of corrosion inhibition performance of Glutaraldehyde on Aluminium in nitric acid solution. <em>Alg. J. Eng. Tech</em>. 2020; 2: 003-010.</p> <p><em><a href="http://dx.doi.org/10.5281/zenodo.3923029">http://dx.doi.org/10.5281/zenodo.3923029</a></em></p> <p>References</p> <ol> <li>Obot IB, Obi-Egbedi NO, Umoren SA, Ebenso EE. Synergistic and antagonistic effects of anions and Ipomoea invulcrata as green corrosion inhibitor for aluminium dissolution in acidic medium<em>. Int. J. Electrochem. Sci.</em> 2010;5(7):994-1007.</li> <li>KK Alaneme; SJ Olusegun.Leo. J. Sci., 2012, 20: 59-79.</li> <li>Vargel C. Corrosion of aluminium. Elsevier Ltd. 2004.</li> <li>Davó B, De Damborenea JJ. Use of rare earth salts as electrochemical corrosion inhibitors for an Al–Li–Cu (8090) alloy in 3.56% NaCl. <em>Electrochimica Acta</em>. 2004;49(27):4957-4965.</li> <li>Nnanna LA, Onwuagba BN, Mejeha IM, Okeoma KB. Inhibition effects of some plant extracts on the acid corrosion of aluminium alloy<em>. African Journal of Pure and Applied Chemistry</em>. 2010;4(2):011-016.</li> <li>Lahhit N, Bouyanzer A, Desjobert JM, Hammouti B, Salghi R, Costa J, Jama C, Bentiss F, Majidi L. Fennel (Foeniculum vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution. <em>Portugaliae Electrochimica Acta</em>. 2011;29(2):127-138.</li> <li>Selvi JA, Rajendran S, Sri VG, Amalraj AJ, Narayanasamy B. Corrosion inhibition by beet root extract. <em>Portugaliae Electrochimica Acta</em>. 2009;27(1):1-11.</li> <li>Singh A, Ebenso EE, Quraishi MA. Stem extract of brahmi (Bacopa Monnieri) as green corrosion inhibitor for aluminum in NaOH solution<em>. Int. J. Electrochem. Sci</em>. 2012;7:3409-3419.</li> <li>Satar MZ, Noor MF, Samsudin MW, Othman MR. Corrosion inhibition of aluminium by using nipah (Nypa fruticans) extract solution in hydrochloric acid (HCl) media. <em>International Journal of Electrochemical Science</em>. 2012;7(3):1958-1967.</li> <li>Siaka AA, Eddy NO, Muhammad A, Elinge CM, Atiku FA. <em> Sci. Eng</em>. 2012; 2: 4-48.</li> <li>Nnanna LA, Obasi VU, Nwadiuko OC, Mejeh KI, Ekekwe ND, Udensi SC. Inhibition by Newbouldia leavis leaf extract of the corrosion of aluminium in HCl and H<sub>2</sub>SO<sub>4</sub> <em>Archives of Applied Science Research</em>. 2012;4(1):207-217.</li> <li>Ansari KR, Quraishi MA. Effect of three component (aniline–formaldehyde and piperazine) polymer on mild steel corrosion in hydrochloric acid medium. <em>Journal of the Association of Arab Universities for Basic and Applied Sciences</em>. 2015;18:12-18.</li> <li>Omotioma M, Onukwuli OD. Evaluation of Pwpaw leaves extract as anti-corrosion agent for Aluminium in Hydrochloric acid medium. <em>Nigerian Journal of Technology</em>. 2017;36(2):496-504.</li> <li>Husaini M, Usman B, Ibrahim MB. Evaluation of corrosion behaviour of aluminum in different environment. <em>Bayero Journal of Pure and Applied Sciences</em>. 2018;11(1):88-92.</li> <li>Adejo SO, Ekwenchi MM, Momoh F, Odiniya E. Adsorption characterization of ethanol extract of leaves of Portulaca oleracea as green corrosion inhibitor for corrosion of mild steel in sulphuric acid medium. <em>International Journal of Modern Chemistry</em>. 2012;1(3):125-134.</li> <li>Deepa P, Rao P. Corrosion inhibition of aluminium aaloy by coriuandrum sativum L seed extract in phosphoric acid. <em> Mater. Environ. Sci</em>. 2013;4(5):732-743.</li> <li>Ezeokonkwo MA, Ukoha PO, Nnaji NJ. Green Inhibitor for Aluminium and Mild Steel in Acidic Media: A Case Study of Exudates of Eucalyptus Citriodora. <em>International Journal of Chemical Science</em>. 2012;10(3): 1365-1373.</li> <li>Olasehinde EF, Ogunjobi JK, Akinlosotu OM, Omogbehin SA. Investigation of the Inhibitive Properties of Alchornea laxiflora leaves on the Corrosion of Mild Steel in HCl: Thermodynamics and Kinetic Study. <em>Journal of American Science</em>. 2015;11(1):32-39.</li> <li>Udom GI, Cookey GA, Abia AA. The effect of Acanthus montanus leaves extract on corrosion of aluminium in hydrochloric acid medium. <em>Current Journal of Applied Science and Technology</em>. 2017:1-11.</li> <li>Husaini M, Usman B, Ibrahim MB. Study of corrosion inhibition of Aluminum in nitric acid solution using Anisaldehyde (4-methoxy benzaldehyde) as corrosion inhibitor. <em>Algerian Journal of Engineering and Technology</em>. 2019;1(1):11-18.</li> <li>Ebenso EE, Alemu H, Umoren SA, Obot IB. Inhibition of mild steel corrosion in sulphuric acid using alizarin yellow GG dye and synergistic iodide additive. <em> J. Electrochem. Sci</em>. 2008;3(12):1325-1339.</li> </ol> Musa Husaini Bishir Usman Muhammad Bashir Ibrahim Copyright (c) 2020 Algerian Journal of Engineering and Technology http://creativecommons.org/licenses/by-nc/3.0/ 2020-06-28 2020-06-28 2 003 010 Influence of a different fault scenarios on the properties of multi-phase induction machine http://jetjournal.org/index.php/ajet/article/view/24 <p style="text-align: justify;">This paper deals with the influence of a stator fault, power switch faults and open phase fault conditions on the properties of a five-phase induction machine under open-end stator winding (OeW-FPIM). This paper will develop an accurate mathematical model to simulate the faulty OeW-FPIM drives. The proposed model is based on the theory of electromagnetic coupling of electrical circuits coupled to the differential equation system governing the machine behavior in presence of the stator winding faults. In fact, when a short circuits between coils occurs, the stator winding function of the injured phase changes. As a consequence, the stator resistance, the stator inductance of this phase and its mutual inductance with all the other circuits change also. Consequently, the inductances and resistance matrices will be changed by taking into account the introduced coefficients of short-circuited turns. The performance of the OeW-FPIM drives have been tested via simulation under different fault scenarios conditions.</p> <p><a href="https://doi.org/10.5281/zenodo.3923074"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3923074.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong>Khadar S. Influence of a Different Fault Scenarios on the Properties of Multi-Phase Induction Machine. <em>Alg. J. Eng. Tech.</em> 2020; 2: 011-021. <a href="http://dx.doi.org/10.5281/zenodo.3923074">http://dx.doi.org/10.5281/zenodo.3923074</a></p> <p>References</p> <ol> <li>Pieńkowski K. Analysis and control of dual stator winding induction motor. <em>Archives of Electrical Engineering</em>. 2012;61(3):421-438. <a href="https://doi.org/10.2478/v10171-012-0033-z.">https://doi.org/10.2478/v10171-012-0033-z.</a></li> <li>Duran MJ, Barrero F. Recent advances in the design, modeling, and control of multiphase machines—Part II. IEEE Transactions on Industrial Electronics. 2015;63(1):459-468.<a href="https://doi.org/10.1109/TIE.2015.2448211">https://doi.org/10.1109/TIE.2015.2448211</a>.</li> <li>Barrero F, Duran MJ. Recent advances in the design, modeling, and control of multiphase machines—Part I. <em>IEEE Transactions on Industrial Electronics.</em> 2015;63(1):449-458. <a href="https://doi.org/10.1109/TIE.2015.2447733">https://doi.org/10.1109/TIE.2015.2447733</a>.</li> <li>Abdel-Khalik AS, Masoud MI, Williams BW. Improved flux pattern with third harmonic injection for multiphase induction machines. <em>IEEE Transactions on Power Electronics</em>. 2011;27(3):1563-1578. <a href="https://doi.org/10.1109/TPEL.2011.2163320">https://doi.org/10.1109/TPEL.2011.2163320</a>.</li> <li>Mengoni M, Zarri L, Tani A, Gritli Y, Serra G, Filippetti F, Casadei D. Online detection of high-resistance connections in multiphase induction machines. <em>IEEE Transactions on Power Electronics</em>. 2014;30(8):4505-13.. <a href="https://doi.org/10.1109/TPEL.2014.2357439">https://doi.org/10.1109/TPEL.2014.2357439</a>.</li> <li>de Lillo L, Empringham L, Wheeler PW, Khwan-On S, Gerada C, Othman MN, Huang X. Multiphase power converter drive for fault-tolerant machine development in aerospace applications. <em>IEEE Transactions on Industrial Electronics</em>. 2009;57(2):575-583. <a href="https://doi.org/10.1109/TIE.2009.2036026">https://doi.org/10.1109/TIE.2009.2036026</a>.</li> <li>Saad K, Abdellah K, Ahmed H, Iqbal A. Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation. <em>Engineering Science and Technology, an International Journal.</em> 2019;22(4):1013-1026.. <a href="https://doi.org/10.1016/j.jestch.2019.02.008">https://doi.org/10.1016/j.jestch.2019.02.008</a>.</li> <li>Khadar S, Kouzou A, Rezzaoui MM, Hafaifa A. Sensorless control technique of open-end winding five phase induction motor under partial stator winding short-circuit. <em>Periodica Polytechnica Electrical Engineering and Computer Science</em>. 2020;64(1):2-19. <a href="https://doi.org/10.3311/PPee.14306">https://doi.org/10.3311/PPee.14306</a>.</li> <li>Chowdhury S, Wheeler PW, Patel C, Gerada C. A multilevel converter with a floating bridge for open-end winding motor drive applications. <em>IEEE Transactions on Industrial Electronics</em>. 2016;63(9):5366-5375. <a href="https://doi.org/10.1109/TIE.2016.2561265">https://doi.org/10.1109/TIE.2016.2561265</a>.</li> <li>Jacobina CB, Oliveira AC, de Almeida Carlos GA, de Rossiter Corrêa MB. Hybrid modular multilevel DSCC inverter for open-end winding induction motor drives. <em>IEEE Transactions on Industry Applications</em>. 2016;53(2):1232-1242. <a href="https://doi.org/10.1109/TIA.2016.2632701">https://doi.org/10.1109/TIA.2016.2632701</a>.</li> <li>Sekhar KR, Srinivas S. Discontinuous decoupled PWMs for reduced current ripple in a dual two-level inverter fed open-end winding induction motor drive. <em>IEEE Transactions on Power Electronics</em>. 2012;28(5):2493-2502. <a href="https://doi.org/10.1109/TPEL.2012.2215344">https://doi.org/10.1109/TPEL.2012.2215344</a>.</li> <li>Jones M, Satiawan IN, Bodo N, Levi E. A dual five-phase space-vector modulation algorithm based on the decomposition method. <em>IEEE Transactions on Industry Applications</em>. 2012;48(6):2110-2120. <a href="https://doi.org/10.1109/TIA.2012.2226422">https://doi.org/10.1109/TIA.2012.2226422</a>.</li> <li>Riedemann J, Clare JC, Wheeler PW, Blasco-Gimenez R, Rivera M, Pena R. Open-end winding induction machine fed by a dual-output indirect matrix converter. <em>IEEE Transactions on Industrial Electronics</em>. 2016;63(7):4118-4128.. <a href="https://doi.org/10.1109/TIE.2016.2531020">https://doi.org/10.1109/TIE.2016.2531020</a>.</li> <li>Kalaiselvi J, Srinivas S. Bearing currents and shaft voltage reduction in dual-inverter-fed open-end winding induction motor with reduced CMV PWM methods. <em>IEEE Transactions on Industrial Electronics</em>. 2014;62(1):144-52. <a href="https://doi.org/10.1109/TIE.2014.2336614">https://doi.org/10.1109/TIE.2014.2336614</a>.</li> <li>Wang Y, Panda D, Lipo TA, Pan D. Open-winding power conversion systems fed by half-controlled converters. <em>IEEE Transactions on Power Electronics</em>. 2012;28(5):2427-2436. <a href="https://doi.org/10.1109/TPEL.2012.2218259">https://doi.org/10.1109/TPEL.2012.2218259</a>.</li> <li>Nandi S, Toliyat HA, Li X. Condition monitoring and fault diagnosis of electrical motors—A review. <em>IEEE transactions on energy conversion</em>. 2005;20(4):719-729. <a href="https://doi.org/10.1109/TEC.2005.847955">https://doi.org/10.1109/TEC.2005.847955</a>.</li> <li>Siddique A, Yadava GS, Singh B. A review of stator fault monitoring techniques of induction motors. <em>IEEE transactions on energy conversion</em>. 2005 Feb 22;20(1):106-114. <a href="https://doi.org/10.1109/TEC.2004.837304">https://doi.org/10.1109/TEC.2004.837304</a>.</li> <li>Bae CJ, Lee DC, Nguyen TH. Detection and identification of multiple IGBT open-circuit faults in PWM inverters for AC machine drives. <em>IET Power Electronics</em>. 2019;12(4):923-931. <a href="https://dx.doi.org/10.1049/iet-pel.2018.5188">https://dx.doi.org/10.1049/iet-pel.2018.5188</a>.</li> <li>Guzman H, Duran MJ, Barrero F, Bogado B, Toral S. Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques. <em>IEEE Transactions on Industrial Electronics</em>. 2013 Nov 8;61(9):4474-4484. <a href="https://doi.org/10.1109/TIE.2013.2289882">https://doi.org/10.1109/TIE.2013.2289882</a>.</li> <li>Schreier L, Bendl J, Chomat M. Operation of five-phase induction motor after loss of one phase of feeding source. <em>Electrical Engineering</em>. 2017;99(1):9-18. <a href="https://doi.org/10.1007/s00202-016-0370-9">https://doi.org/10.1007/s00202-016-0370-9</a>.</li> <li>Zhou H, Zhao W, Liu G, Cheng R, Xie Y. Remedial field-oriented control of five-phase fault-tolerant permanent-magnet motor by using reduced-order transformation matrices. <em>IEEE Transactions on Industrial Electronics</em>. 2016;64(1):169-178. <a href="https://doi.org/10.1109/TIE.2016.2599501">https://doi.org/10.1109/TIE.2016.2599501</a>.</li> <li>Listwan J, Pieńkowski K. Field-oriented control of five-phase induction motor with open-end stator winding. <em>Archives of Electrical Engineering</em>. 2016;65(3). <a href="https://doi.org/10.1515/aee-2016-0029">https://doi.org/10.1515/aee-2016-0029</a>.</li> <li>Satiawan IN, Citarsa IB, Wiryajati IK, Aware MV. Performance comparison of PWM schemes of dual-inverter fed five-phase motor drives. <em>International Journal of Technology</em>. 2014;5(3):277-286. <a href="https://doi.org/10.14716/ijtech.v5i3.609">https://doi.org/10.14716/ijtech.v5i3.609</a>.</li> <li>Bodo N, Jones M, Levi E. A space vector PWM with common-mode voltage elimination for open-end winding five-phase drives with a single DC supply. <em>IEEE Transactions on Industrial Electronics</em>. 2014;61(5):2197-2207.. <a href="https://doi.org/10.1109/TIE.2013.2272273">https://doi.org/10.1109/TIE.2013.2272273</a>.</li> <li>Devanneaux V, Dagues B, Faucher J, Barakat G. An accurate model of squirrel cage induction machines under stator faults. <em>Mathematics and computers in simulation</em>. 2003;63(3-5):377-391. <a href="https://doi.org/10.1016/S0378-4754(03)00083-1">https://doi.org/10.1016/S0378-4754(03)00083-1</a>.</li> <li>Leboeuf N, Boileau T, Nahid-Mobarakeh B, Takorabet N, Meibody-Tabar F, Clerc G. Estimating permanent-magnet motor parameters under inter-turn fault conditions. <em>IEEE transactions on magnetics</em>. 2012;48(2):963-966. <a href="https://doi.org/10.1109/TMAG.2011.2177642">https://doi.org/10.1109/TMAG.2011.2177642</a>.</li> <li>Soufi Y, Bahi T, Merabet H, Lekhchine S. Short circuit between turns in stator winding of induction machine fault detection and diagnosis. InApplied mechanics and materials 2013 (Vol. 416, pp. 565-571). Trans Tech Publications Ltd. <a href="https://doi.org/10.4028/www.scientific.net/AMM.416-417.565">https://doi.org/10.4028/www.scientific.net/AMM.416-417.565</a>.</li> <li>Guezmil A, Berriri H, Pusca R, Sakly A, Romary R, Mimouni MF. Detecting inter-turn short-circuit fault in induction machine using high-order sliding mode observer: simulation and experimental verification. <em>Journal of Control, Automation and Electrical Systems.</em> 2017;28(4):532-540. <a href="https://doi.org/10.1007/s40313-017-0314-2">https://doi.org/10.1007/s40313-017-0314-2</a>.</li> </ol> Saad Khadar Copyright (c) 2020 Algerian Journal of Engineering and Technology https://creativecommons.org/licenses/by-nc/4.0 2020-06-28 2020-06-28 2 011 021 Experimental study of exfoliation corrosion-induced mechanical properties degradation of Aluminum alloys: 2024-T3 and 5083-H22 http://jetjournal.org/index.php/ajet/article/view/23 <p style="text-align: justify;">The objective of the present work were to study the influence of exfoliation corrosion (EFC) of 2024 and 5083 aluminum alloys on the mechanical properties degradation. Tensile test had been carried out on pre-corroded specimens, exposed to laboratory accelerated exfoliation corrosion solution. The analysis suggests that exfoliation exposure leads to decrease the mechanical properties of all materials. The effects of the grain boundary character distribution and precipitates on corrosion are discussed on the basis of experimental observations by Scanning Electron Microscope SEM combined with Energy Dispersive Spectroscopy EDS analysis. &nbsp;</p> <p><a href="https://doi.org/10.5281/zenodo.3924714"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3924714.svg" alt="DOI"></a></p> <p style="text-align: justify;"><strong>Cite as: </strong>Brahami A, Fajoui J, Bouchouicha B. Experimental study of exfoliation corrosion-induced mechanical properties degradation of aluminum alloys: 2024-T3 and 5083-H22. <em>Alg. J. Eng. Tech. </em>2020;02:022-028.<em> <a href="http://dx.doi.org/10.5281/zenodo.3924714">http://dx.doi.org/10.5281/zenodo.3924714</a></em></p> <p>References</p> <ol> <li>Brahami A, Fajoui J, Bouchouicha B. Exfoliation Corrosion Impact on Microstructure, Mechanical Properties, and Fatigue Crack Growth of Aeronautical Aluminum Alloy. <em>Journal of Failure Analysis and Prevention</em>. 2020;20(1):197-207. <a href="https://doi.org/10.1007/s11668-020-00815-y">https://doi.org/10.1007/s11668-020-00815-y</a></li> <li>Summerson TJ, Sprowls DO. Corrosion Behavior of Aluminum Alloys, in International Conference in Celebration of the Centennial of the Hall-Heroult Process. 1986. University of Virginia, Charlottes ville, Virginia.</li> <li>Chen Y, Liu C, Zhou J, Wang X. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. <em>International Journal of Fatigue</em>. 2017;98:269-278.</li> <li>Liddiard EAG, Whittaker JA, Farmery HK. <em>Journal of the Institute of Metals</em>, 89, 377-384 (1960-1961).</li> <li>Zahavi J, Yahalom J. Exfoliation corrosion of AlMgSi alloys in water. <em>Journal of the Electrochemical Society</em>. 1982;129(6):1181.</li> <li>Conor PC, James AD, Collier RN. Evaluation of Exfoliation Corrosion Damage to 7075-T6 Aluminum Alloy Aircraft Structural Components. Materials and Structures Group, Defense Technology Agency. 2004.</li> <li>Sprowls DO, Walsh JD, Shumaker MB. Simplified exfoliation testing of aluminum alloys. InLocalized Corrosion—Cause of Metal Failure 1972 Jan. ASTM International.38-65.</li> <li>Robinson MJ, Jackson NC. Exfoliation corrosion of high strength Al-Cu-Mg alloys: effect of grain structure. Corrosion Engineering, Science, and Technology. 1999;34(1):45-49.</li> <li>Robinson MJ. Mathematical modelling of exfoliation corrosion in high strength aluminium alloys. <em>Corrosion Science</em>. 1982;22(8):775-790.</li> <li>Kelly DJ, Robinson MJ. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090. <em>Corrosion</em>. 1993;49(10):787-795.</li> <li>Standard A. G34-01: Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Al Alloys. ASTM International: West Conshohocken, PA, USA. 2001.</li> <li>ASTM Standard E8-04, Standard Test Methods for Tension Testing of Metallic Materials [Metric], Part 03.01, Metals Mechanical Testing Elevated and Low-Temperature Tests Metallographic.</li> <li>American Society for Testing and Materials (Filadelfia, Pennsylvania). ASTM G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM. 2004.</li> <li>Brahami A, Bouchouicha B, Zemri M, Fajoui J. Fatigue crack growth rate, microstructure and mechanical properties of diverse range of aluminum alloy: a comparison. <em>Mechanics and Mechanical Engineering</em>. 2018;22(1):329-339.</li> <li>Pantelakis SG, Daglaras PG, Apostolopoulos CA. Tensile and energy density properties of 2024, 6013, 8090 and 2091 aircraft aluminum alloy after corrosion exposure. <em>Theoretical and Applied Fracture Mechanics</em>. 2000;33(2):117-34.</li> <li>Kamoutsi H, Haidemenopoulos GN, Bontozoglou V, Pantelakis S. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. <em>Corrosion Science</em>. 2006;48(5):1209-1224.</li> <li>Andreatta F, Terryn H, De Wit JH. Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075-T6. <em>Corrosion Science</em>. 2003;45(8):1733-1746.</li> </ol> Abdessamad Brahami Jamal Fajoui Benattou Bouchouicha Copyright (c) 2020 Algerian Journal of Engineering and Technology http://creativecommons.org/licenses/by-nc/3.0/ 2020-06-28 2020-06-28 2 022 028 Synthesis and characterization of schiff base of 3-[(2-Hydroxy-phenylimino)-methyl]-6-methoxy-quinolin-2- ol and its metal complexes and their evaluation for antibacterial and antifungal activity http://jetjournal.org/index.php/ajet/article/view/26 <p style="text-align: justify;">A Schiff base of 3-[(2-Hydroxy-phenylimino)-methyl]-6-methoxy-quinolin-2-ol was synthesized by a 1:1 molar condensation of 2-Hydroxy-6-methoxy-3-quinolinecarboxaldehyde and 2-aminophenol. The metal (II) complexes were synthesized by refluxing the ethanolic solutions of the Schiff base and the chloride salts of the metals. Melting point, decomposition temperature, solubility, elemental analysis, fourier transform infrared spectroscopy, magnetic susceptibility and molar conductivity measurements were used to characterized the Schiff base and its metal complexes. The Schiff base is yellow and it has a melting point of 251 <sup>O</sup>C. The decomposition temperature of the Cd (II) and Cu (II) complexes were 282 and 270 <sup>O</sup>C respectively. The elemental analysis of the complexes established the formation of 1:1 metal - ligand ratio. The non-electrolytic natures of the complexes were revealed by the molar conductivity values. The behavior of the Schiff base and its coordination with the metal ions was suggested by the infrared spectral data via the azomethine nitrogen and hydroxyl oxygen after deprotonation. The solubility test of the Schiff base and its metal complexes were carried out by using different solvents. The antibacterial and antifungal activity were performed and discussed.</p> <p><a href="https://doi.org/10.5281/zenodo.3945251"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3945251.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong> Jabbi AM, Husaini M., Aliyu HN. Synthesis and characterization of schiff base of 3-[(2-Hydroxy-phenylimino)-methyl]-6-methoxy-quinolin-2- ol and its metal complexes and their evaluation for antibacterial and antifungal activity. <em>Alg. J. Eng. Tech</em>. 2020; 2: 029-036. <a href="http://dx.doi.org/10.5281/zenodo.3945251">http://dx.doi.org/10.5281/zenodo.3945251</a></p> <p><strong>References</strong></p> <ol> <li>Abu-Dief AM, Mohamed IM. A review on versatile applications of transition metal complexes incorporating Schiff bases. <em>Beni-suef university journal of basic and applied sciences</em>. 2015;4(2):119-133. <a href="https://doi.org/10.106/j.bjbas.2015.05.004">https://doi.org/10.106/j.bjbas.2015.05.004</a></li> <li>Shabbir M, Akhter Z, Ahmad I, Ahmed S, Ismail H, Mirza B, McKee V, Bolte M. Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases. <em>Journal of Molecular Structure</em>. 2016 ;1116:84-92.</li> <li>Al Zoubi W. Biological activities of Schiff bases and their complexes: a review of recent works. <em>International Journal of Organic Chemistry</em>. 2013;3: 73-95.</li> <li>Gwaram NS, Ali HM, Khaledi H, Abdulla MA, Hadi AH, Lin TK, Ching CL, Ooi CL. Antibacterial evaluation of some Schiff bases derived from 2-acetylpyridine and their metal complexes. <em>Molecules</em>. 2012;17(5):5952-5971.</li> <li>Arulmurugan S, Kavitha HP, Venkatraman BR. Biological activities of Schiff base and its complexes: a review. <em>Rasayan J Chem</em>. 2010;3(3):385-410.</li> <li>Da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CV, de Fátima Â. Schiff bases: A short review of their antimicrobial activities. <em>Journal of Advanced research</em>. 2011;2(1):1-8.</li> <li>Abdel-Rahman LH, Abu-Dief AM, Newair EF, Hamdan SK. Some new nano-sized Cr (III), Fe (II), Co (II), and Ni (II) complexes incorporating 2-((E)-(pyridine-2-ylimino) methyl) napthalen-1-ol ligand: Structural characterization, electrochemical, antioxidant, antimicrobial, antiviral assessment and DNA interaction. <em>Journal of Photochemistry and Photobiology B: Biology</em>. 2016;160:18-31.</li> <li>Qin W, Long S, Panunzio M, Biondi S. Schiff bases: A short survey on an evergreen chemistry tool. <em>Molecules</em>. 2013;18(10):12264-12289.</li> <li>Wang LH, Wang YL, Hou ZZ, Liu YZ. Synthesis and Fluorescence Property of novel Zn2+ Schiff base Complex. <em>Advanced Materials Research</em>. 2012; 535: 1237-1240.</li> <li>Siddappa K, Reddy PC. Synthesis, Spectral Characterization and Antimicrovial Studies of Transition Metal (II) Compleses with Schiff Base 3-[92-hydroxy-6-methoxyquinoline-3-ylmethylene)-amino]-2-methyl-3H-quinoline-4-one. <em>International Journal of Applied Biology and Phermaceutical</em>. 2012;3(3):168-176.</li> <li>Jorgensen JH. and Turnidge JD. Susceptibility Test Methods: dilution and Disk Diffution Methods. Manual of Clinical Microbiology, 8<sup>th</sup> American Society of Microbiology, Washington, DC. 2003;1108.1127.</li> <li>Eman TS. Synthesis, Characterization and Spectroscopic Studies of 2–{{E}–hydroxyphenyl) imino) methyl} phenol Schiff base with Some Metal Complexes. <em>Journal of Al-Nahrain University</em>. 2015;18(1):39-45.</li> <li>Ahmed AA, Yunusa Y, Umar HA. Synthesis and characterisation of Cu (II) AND Zn (II) schiff base complexes<em>. International Journal Of Science And Applied Research</em>. 2017;2(3):8-16.</li> <li>Sobola AO, Watkins GM. Antimicrobial activity and Cu (II) complexes of Schiff bases derived from ortho-aminophenol and salicylaldehyde derivatives<em>. Journal Of Chemical And Pharmaceutical Research</em>. 2013;5(10):147-154.</li> <li>El-Ajaily MM, Maihub AA, Filog SM. Synthesis and Characterization of Some Co (II), Ni (II) and Cu (II) Mixed Ligand Chelates of 8-Hydroxyquinoline, Anthranilic Acid and 0-Aminophenol. <em>Asian Journal of Chemistry</em>. 2006;18(4):2421-2430.</li> <li>Mounika K, Pragathi A, Gyanakumari C. Synthesis characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. <em>Journal of Scientific Research</em>. 2010;2(3): 513 – 524</li> <li>Rasha SJ and Farah MI. Synthesis and Characterization of Tetradentate bissalicylaldehyde Schiff base with Some Transition Metal Complexes. <em>The First</em> <em>Scientific Conference of the College</em> <em>of Education for Pure Sciences, Alnahram</em> <em>University, </em>2012; 124 – 131</li> <li>Yahyazadeh A, Azimi V. Synthesis of some unsymmetrical new Schiff bases from azo dyes. <em style="text-align: justify;">European Chemical Bulletin</em><span style="text-align: justify;">. 2013;2(7):453-455.</span></li> </ol> Muhammad Jabbi Abubakar Musa Husaini Aliyu Habu Nuhu Copyright (c) 2020 Algerian Journal of Engineering and Technology https://creativecommons.org/licenses/by-nc/4.0 2020-06-28 2020-06-28 2 029 036 Kinetic and thermodynamic studies of malachite green adsorption using activated carbon prepared from desert date seed shell http://jetjournal.org/index.php/ajet/article/view/28 <p style="text-align: justify;">The negative effect of high concentration of dyes in the aquatic environment on humans and aquatic plants prompted this research. The adsorption of hazardous malachite green (MG) from aqueous solution using activated carbon derived from desert date seed shell (DDAC) was examined. Batch equilibrium technique was employed to study the effect of contact time (5-120 min), initial concentration (20-100 mg dm<sup>-3</sup>) and temperature (303.15-333.15 K) on the adsorption capacity of the prepared adsorbent. Experimental data were analyzed using five kinetic models: pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and Boyd models and it was found that the pseudo-second-order model fitted the adsorption data most with the highest correlation (R<sup>2</sup> = 0.9999). The overall adsorption process appears to be jointly controlled by intraparticle diffusion and film diffusion mechanisms. Studies of thermodynamic behavior revealed negative values for ∆G (-11.45 to -13.42 kJ mol<sup>-1</sup>), and a positive value for ∆H (8.39 kJ mol<sup>-1</sup>) and ∆S (0.065 kJ mol<sup>-1</sup> K<sup>-1</sup>). These indicated the feasibility, endothermicity and spontaneity of the removal process. The results demonstrated that the adsorbent could be exploited in the removal of MG from aqueous solution.</p> <p><a href="https://doi.org/10.5281/zenodo.3945333"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3945333.svg" alt="DOI"></a></p> <p style="text-align: justify;"><strong>Cite as: </strong>Yunusa U,Usman B, Ibrahim MB. Kinetic and thermodynamic studies of malachite green adsorption using activated carbon prepared from desert date seed shell. <em>Alg. J. Eng. Tech.</em> 2020; 2: 037-045. <a href="http://dx.doi.org/10.5281/zenodo.3945333">http://dx.doi.org/10.5281/zenodo.3945333</a></p> <p><strong>References</strong></p> <ol> <li>Azaman SH, Afandi A, Hameed BH, Mohd Din AT. Removal of malachite green from aqueous phase using coconut shell activated carbon: Adsorption, desorption, and reusability studies<em>. Journal of Applied Science and Engineering</em>. 2018 ;21(3):317-330.</li> <li>Chowdhury S, Mishra R, Saha P, Kushwaha P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. <em>Desalination</em>. 2011;265(1-3):159-168.</li> <li>Ogugbue CJ, Sawidis T. Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. <em>Biotechnology research international</em>. 2011;2011.</li> <li>Chan LS, Cheung WH, Allen SJ, McKay GJ. Equilibrium adsorption isotherm study of binary basic dyes on to bamboo derived activated carbon. <em>HKIE transactions</em>. 2017;24(4):182-192.</li> <li>Banerjee S, Sharma GC, Gautam RK, Chattopadhyaya MC, Upadhyay SN, Sharma YC. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. <em>Journal of Molecular Liquids</em>. 2016;213:162-172.</li> <li>Raval NP, Shah PU, Shah NK. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. <em>Applied Water Science</em>. 2017;7(7):3407-3445.</li> <li>Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. <em>Separation and Purification Technology</em>. 2015;150:229-242.</li> <li>Tongpoothorn W, Somsimee O, Somboon T, Sriuttha M. An alternative and cost-effective biosorbent derived from napier grass stem for malachite green removal. <em>Journal of Materials and Environmental Sciences</em>. 2019;10(8):685-695.</li> <li>Lee SL, Park JH, Kim SH, Kang SW, Cho JS, Jeon JR, Lee YB, Seo DC. Sorption behavior of malachite green onto pristine lignin to evaluate the possibility as a dye adsorbent by lignin. <em>Applied Biological Chemistry.</em> 2019;62(1):37.</li> <li>Reis HC, Cossolin AS, Santos BA, Castro KC, Pereira GM, Silva VC, Sousa PT, Dall’Oglio EL, Vasconcelos LG, Morais EB. Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution. <em>International Journal of Biotechnology and Bioengineering</em>. 2018;12(4):118-126.</li> <li>Caponi N, Collazzo GC, Jahn SL, Dotto GL, Mazutti MA, Foletto EL. Use of Brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents. <em>Materials Research</em>. 2017;20:14-22.</li> <li>Rinku J, Shripal S, Hemant P. Removal of Malachite Green Dye from Aqueous Solution Using Magnetic Activated Carbon.<em> Research Journal of Chemical Sciences</em>. 2015;5(12): 38-43.</li> <li>Bello OS, Ahmad MA. Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. <em>Separation Science and Technology</em>. 2012;47(6):903-912.</li> <li>Sharma P, Kaur H, Sharma M, Sahore V. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. <em>Environmental monitoring and assessment</em>. 2011;183(1-4):151-195.</li> <li>Wang X, Wang S, Yin X, Chen J, Zhu L. Activated Carbon Preparation from Cassava Residue Using a Two-Step KOH Activation: Preparation, Micropore Structure and Adsorption Capacity. <em>Journal of Biobased Materials and Bioenergy</em>. 2014;8(1):35-42.</li> <li>Hamdaoui O, Saoudi F, Chiha M, Naffrechoux E. Sorption of malachite green by a novel sorbent, dead leaves of plane tree: Equilibrium and kinetic modeling. <em>Chemical Engineering Journal</em>. 2008;143(1-3):73-84.</li> <li>Zaid MK, Jamion NA, Omar Q, Yong SK. Sorption of malachite green (MG) by cassava stem biochar (CSB) kinetic and isotherm studies. <em>Journal of Fundamental and Applied Sciences</em>. 2017;9(6S):273-287.</li> <li>Lee YC, Amini MH, Sulaiman NS, Mazlan M, Boon JG. Batch adsorption and isothermic studies of malachite green dye adsorption using Leucaena leucocephala biomass as potential adsorbent in water treatment. <em>Songklanakarin Journal of Science and Technology</em>. 2018;40(3):563-569.</li> <li>Santhi T, Manonmani S, Vasantha VS, Chang YT. A new alternative adsorbent for the removal of cationic dyes from aqueous solution. <em>Arabian journal of chemistry</em>. 2016;9:S466-S474.</li> <li>Dahri MK, Kooh MR, Lim LB. Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. <em>Journal of Environmental Chemical Engineering</em>. 2014;2(3):1434-44.</li> <li>Chowdhury S, Das P. Utilization of a domestic waste—eggshells for removal of hazardous malachite green from aqueous solutions. <em>Environmental Progress &amp; Sustainable Energy</em>. 2012;31(3):415-25.</li> <li>Lagergren SK. About the theory of so-called adsorption of soluble substances. Sven. <em> Handingarl</em>. 1898;24:1-39.</li> <li>Wu H, Chen R, Du H, Zhang J, Shi L, Qin Y, Yue L, Wang J. Synthesis of activated carbon from peanut shell as dye adsorbents for wastewater treatment. <em>Adsorption Science &amp; Technology</em>. 2019;37(1-2):34-48.</li> <li>Ho YS, McKay G. Pseudo-second order model for sorption processes. <em>Process biochemistry</em>. 1999;34(5):451-365.</li> <li>Oyelude EO, Awudza JA, Twumasi SK. Removal of malachite green from aqueous solution using pulverized teak leaf litter: equilibrium, kinetic and thermodynamic studies. <em>Chemistry Central Journal</em>. 2018;12(1):1-10.</li> <li>Mashkoor F, Nasar A, Asiri AM. Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using Tectona grandis sawdust as a very low-cost adsorbent. <em>Scientific reports</em>. 2018;8(1):1-6.</li> <li>Saechiam S, Sripongpun G. Adsorption of malachite green from synthetic wastewater using banana peel adsorbents. <em>Songklanakarin Journal of Science &amp; Technology</em>. 2019;41(4):21-29.</li> <li>Chien SH, Clayton WR. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. <em>Soil Science Society of America Journal</em>. 1980;44(2):265-268.</li> <li>Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. <em>Journal of the sanitary engineering division</em>. 1963;89(2):31-60.</li> <li>Ahmed MJ, Dhedan SK. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. <em>Fluid Phase Equilibria</em>. 2012;317:9-14.</li> <li>Gholitabar S, Tahermansouri H. Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound<em>. Carbon Lett</em>. 2017;22:14-24.</li> <li>Reichenberg D. Properties of Ion Exchange Resins in Relation to their Structure. Part III: Kinetics of Exchange. <em>Journal of American Chemical Society. </em> 75:589-598.</li> <li>Ahmad MA, Ahmad N, Bello OS. Adsorptive removal of malachite green dye using durian seed-based activated carbon. <em>Water, Air, &amp; Soil Pollution</em>. 2014;225(8):1-18.</li> <li>Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. <em>ACS applied materials &amp; interfaces</em>. 2012;4(11):5749-5760.</li> <li>Laabd M, Chafai H, Essekri A, Elamine M, Al-Muhtaseb SA, Lakhmiri R, Albourine A. Single and multi-component adsorption of aromatic acids using an eco-friendly polyaniline-based biocomposite. <em>Sustainable materials and technologies</em>. 2017;12:35-43.</li> <li>Rai MK, Giri BS, Nath Y, Bajaj H, Soni S, Singh RP, Singh RS, Rai BN. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study. <em>Journal of Water Supply: Research and Technology-Aqua</em>. 2018;67(8):724-737.</li> </ol> Umar Yunusa Usman Bishir Muhammad Bashir Ibrahim Copyright (c) 2020 Algerian Journal of Engineering and Technology https://creativecommons.org/licenses/by-nc/4.0 2020-06-28 2020-06-28 2 037 045