Algerian Journal of Engineering and Technology http://jetjournal.org/index.php/ajet <p>Algerian Journal of Engineering and Technology (AJET) is an international scholarly refereed research journal which aims to promote the theory and practice of technology, innovation, and engineering.</p> Faculty of Technology, University of Echahid Hamma Lakhdar, El-Oued, Algeria. en-US Algerian Journal of Engineering and Technology Study of corrosion inhibition performance of Glutaraldehyde on Aluminium in nitric acid solution http://jetjournal.org/index.php/ajet/article/view/18 <p style="text-align: justify;">The inhibition effect of glutaraldehyde on the corrosion behavior of aluminium in 1.4 M nitric acid solution was studied using weight loss method, adsorption studies and characterized instrumentally by Fourier Transform Infrared Spectroscopic (FT-IR) analysis. The effects of inhibitor concentration, temperature and surface coverage were all investigated. The effect of inhibitor concentration and other parameters were evaluated for different inhibitor concentrations and the probable mechanism for the studied inhibitor was also proposed. The results showed that glutaraldehyde possess an excellent inhibiting effect toward the corrosion of aluminium in nitric acid solution with highest inhibition efficiency of 84.68, 81.34 and 76.87 % at 308, 313 and 318 K in the presence of 0.1 M inhibitor concentration. The values of the activation energy, rate constant, half-life and rate constant in uninhibited acid solution were 31.84 kj mol-1, 3.9 k ×10-3 hr-1 and 1.76 × 102 hr which changed to 57.64 kj mol-1, 0.60 k ×10-3 hr-1 and 11.55 hr in the presence of 0.1 M inhibitor concentration. The positive values of enthalpy reflect the endothermic nature of the reaction. The negative values of entropy (ΔS) signified that the activated complex in the rate determining step represented an association, rather than dissociation. The adsorption of the inhibitor on the metal surface followed Langmuir adsorption isotherm.</p> <p style="text-align: justify;"><a href="https://doi.org/10.5281/zenodo.3647606"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3647606.svg" alt="DOI"></a></p> <p><strong>Cite as: </strong>Husaini, M.,Usman, B.,Ibrahim, M. B (2020). Study of corrosion inhibition performance of Glutaraldehyde on Aluminium in nitric acid solution. <em>Algerian Journal of Engineering and Technology</em>. <em><a href="http://dx.doi.org/10.5281/zenodo.3647606">http://dx.doi.org/10.5281/zenodo.3647606</a></em></p> <p><strong>References</strong></p> <ol> <li style="text-align: justify;">Obot I.B., Obi-Egbedi N. O., Umoren S.A. and Ebenso E. E. (2010); Synergistic and Antagonistic Effects of Anions and Ipomoea invulcrata as Green Corrosion Inhibitor for Aluminium Dissolution in Acidic Medium. International Journal of Electrochemical Science. 5: 994-1007.</li> <li style="text-align: justify;">KK Alaneme; SJ Olusegun.Leo. J. Sci., 2012, 20: 59-79.</li> <li style="text-align: justify;">Vargel, C. (2004). Corrosion of Aluminum, Oxford, Elsevier.</li> <li style="text-align: justify;">Davo, B. and Damborenea, J. J. (2004). Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.56% NaCl Electrochem Acta. 49: 4957.</li> <li style="text-align: justify;">Nnanna, L. A., Onwuagba, B. N., Mejeha, I. M. and Okeoma, K. B. (2010).. Afri. J. Pure Appl. Chem. 4: 011-016.</li> <li style="text-align: justify;">Lahhit, N., Bouyanzer, A., Desjobert, J. M., Hammouti, B., Salghi, R., Costa, J., Jama, C., Bentiss, F., Majidi, L. (2011). Fennel (Foeniculum vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution. Port. Electrochim. Acta. 29: 127-138.</li> <li style="text-align: justify;">Selvi, J. A., Rajendran, S., Sri, V. G., Amalraj, A. J., Narayanasamy, B. (2009). Corrosion inhibition by beet root extract Port. Electrocehem. Acta. 27: 1-11.</li> <li style="text-align: justify;">Singh, B., Ebenso, E. E., and Quraishi, M. A. (2012). Stem extract of Brahmi (Bacopa monnieri) as green corrosion inhibitor for aluminum in NaOH solution Int. J. Electrochem. Sci., 7: 3409-3419</li> <li style="text-align: justify;">MZM, S., MFM, N., Samsudin, M. W. and Othman, M. R. (2012). Corrosion inhibition of aluminum by using Nipah extract solutions in hydrochloric acid media. Int. J. Electrochem. Sci., 7: 1958-1967.</li> <li style="text-align: justify;">Siaka, A. A., Eddy, N. O., Muhammad, A., Elinge, C. M., Atiku, F. A. (2012). Inn. Sci. Eng., 2: 4-48.</li> <li style="text-align: justify;">Nnanna, L. A., Obasi, V. U., Nwadiuko, O. C., Mejeh, K. I., Ekekwe, N. D. and Udensi, S. C (2012). Inhibition of newbouldia leaves extract for the corrosion of aluminium in hydrochloric acid Sch. Res. Lib., 4: 207-217</li> <li style="text-align: justify;">Ansari, K. R. and Quraishi, M. A. (2014). Journal of the Association of Arab Universities for Basic and Applied Sciences. 1-8.</li> <li style="text-align: justify;">Omotioma, M.&nbsp; and Onukwuli O. D. (2017). Evaluation of Pawpaw Leaves Extract as Anti Corrosion Agent for Aluminium in Hydrochloric Acid Medium. Nigerian Journal of Technology. 36(2): 496 – 504.</li> <li style="text-align: justify;">Husaini, M., Usman, B., Ibrahim, M. B. (2019).&nbsp; Evaluation of corrosion behavior of aluminum in different environment. Bayero Journal of Pure and Applied Sciences. 2018 11(1): 88-92.</li> <li style="text-align: justify;">Adejo, S. O., Ekewenchi, M. M., Momoh, F. and Odiniya, E. (2012). Adsorption characterization of ethanol extract of leaves of Portulaca oleracea as green corrosion inhibitor for corrosion of mild steel in sulphuric acid medium. International Journal of Modern Chemistry, 1(3): 125-134.</li> <li style="text-align: justify;">Deepa, P. and Rao, P. (2013). Corrosion inhibition of aluminium aaloy by coriuandrum sativum L seed extract in phosphoric acid. J. Mater. Environ. Sci., 4 (5) 732-743</li> <li style="text-align: justify;">Ezeokonkwo, M. A. Ukoha, P. O. and Nnaji, N. J. (2012). Green Inhibitor for Aluminium and Mild Steel in Acidic Media: A Case Study of Exudates of Eucalyptus Citriodora. International Journal of Chemical Science. 10(3): 1365-1373.</li> <li style="text-align: justify;">Olasehinde, E.F., Ogunjobi, J. K., Akinlosotu, O. M. and Omogbehin, S. A. (2015). Investigation of the Inhibitive Properties of Alchornea laxiflora leaves on the Corrosion of Mild Steel in HCl: Thermodynamics and Kinetic Study. Journal of American Science.&nbsp; 11(1):&nbsp; 32-39.</li> <li style="text-align: justify;">Udom, G. I., Cookey, G. A.&nbsp; and Abia, A. A. (2017). The Effect of Acanthus montanus Leaves Extract on Corrosion of Aluminium in Hydrochloric Acid Medium. Journal of Applied Science and Technology. 25(2): 1-11.</li> <li style="text-align: justify;">Husaini, M., Usman, B., Ibrahim, M. B. (2019). Study of corrosion inhibition of Aluminum in nitric acid solution using Anisaldehyde (4 - methoxy benzaldehyde) as inhibitor. Algerian Journal of Engineering and Technology, http://dx.doi.org/10.5281/zenodo.3477599.</li> <li style="text-align: justify;">Ebenso, E.E., Alemu, . , Umoren, S.A. and Obot, I.B.&nbsp; (2008). Alizarin Yellow GG Dye and Synergistic Iodide Additive. International Journal of Electrochemical Science. 3: 1325–1339.</li> </ol> Musa Husaini Bishir Usman Muhammad Bashir Ibrahim Copyright (c) 2020 Algerian Journal of Engineering and Technology http://creativecommons.org/licenses/by-nc/3.0/ 2020-02-06 2020-02-06 Influence of a different fault scenarios on the properties of multi-phase induction machine http://jetjournal.org/index.php/ajet/article/view/24 <p style="text-align: justify;">This paper deals with the influence of a stator fault, power switch faults and open phase fault conditions on the properties of a five-phase induction machine under open-end stator winding (OeW-FPIM). This paper will develop an accurate mathematical model to simulate the faulty OeW-FPIM drives. The proposed model is based on the theory of electromagnetic coupling of electrical circuits coupled to the differential equation system governing the machine behavior in presence of the stator winding faults. In fact, when a short circuits between coils occurs, the stator winding function of the injured phase changes. As a consequence, the stator resistance, the stator inductance of this phase and its mutual inductance with all the other circuits change also. Consequently, the inductances and resistance matrices will be changed by taking into account the introduced coefficients of short-circuited turns. The performance of the OeW-FPIM drives have been tested via simulation under different fault scenarios conditions.</p> <p><a href="https://doi.org/10.5281/zenodo.3647803"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3647803.svg" alt="DOI"></a></p> <p><strong>Cite as: </strong>Khadar, S. (2020). Influence of a different fault scenarios on the properties of multi-phase induction machine. <em>Algerian Journal of Engineering and Technology</em>. <a href="http://dx.doi.org/10.5281/zenodo.3647803">http://dx.doi.org/10.5281/zenodo.3647803</a></p> <p><strong>References</strong></p> <ol> <li style="text-align: justify;">Pienkowsk, K. (2012). Analysis and control of dual stator winding induction motor. Archives of Electrical Engineering, 61, 421-438. https://doi.org/10.2478/v10171-012-0033-z.</li> <li style="text-align: justify;">Duran M, Barrero F (2016) Recent Advances in the Design, Modeling and Control of Multiphase Machines – Part 2. IEEE Transactions on Industrial Electronics 63:459-468. https://doi.org/10.1109/TIE.2015.2448211.</li> <li style="text-align: justify;">Barrero F, Duran M (2016) Recent Advances in the Design, Modeling and Control of Multiphase Machines – Part 1. IEEE Transactions on Industrial Electronics 63:449-458. https://doi.org/10.1109/TIE.2015.2447733.</li> <li style="text-align: justify;">Abdel-Khalik AS, Masoud MI, Williams WB (2012) Improved flux pattern with third harmonic injection for multiphase induction machines. IEEE Transactions on Power Electronics 27:1563-1578. https://doi.org/10.1109/TPEL.2011.2163320.</li> <li style="text-align: justify;">Mengoni M, Zarri L, Tani A. et al (2015) On-line detection of high-resistance connections in multiphase induction machines. IEEE Transactions on Power Electronics 30:4505-4513. https://doi.org/10.1109/TPEL.2014.2357439.</li> <li style="text-align: justify;">De Lillo L, Empringham L, Wheeler PW. et al (2010) Multiphase power converter drive for fault-tolerant machine development in aerospace applications. IEEE Transactions on Industriel Electronics 57:575-583. https://doi.org/10.1109/TIE.2009.2036026.</li> <li style="text-align: justify;">Khadar S, Kouzou A, Hafaifa A. et al (2019) Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation. Engineering Science and Technology an International Journal 22:1013-1026. https://doi.org/10.1016/j.jestch.2019.02.008.</li> <li style="text-align: justify;">Khadar S, Kouzou A, Rezzaoui MM. et al (2019) Sensorless Control Technique of Open-End Winding Five Phase Induction Motor Under Partial Stator Winding Short-Circuit. Periodica Polytechnica Electrical Engineering and Computer Science https://doi.org/10.3311/PPee.14306.</li> <li style="text-align: justify;">Shajjad C, Patrick W, Patel C. et al (2016) A multi-level converter with a floating bridge for open-ended winding motor drive applications. IEEE Transactions on Industrial Electronics 63:5366-5375. https://doi.org/10.1109/TIE.2016.2561265.</li> <li style="text-align: justify;">Da Silva IRFMP, Jacobina CB, Oliveira AC. et al (2017) Hybrid Modular Multilevel DSCC Inverter for Open-End Winding Induction Motor Drives. IEEE Transactions on Industry Applications 53:1232-1242. https://doi.org/10.1109/TIA.2016.2632701.</li> <li style="text-align: justify;">Sekhar KR, Srinivas S (2013) Discontinuous Decoupled PWMs for Reduced Current Ripple in a Dual Two-Level Inverter Fed Open-End Winding Induction Motor Drive. IEEE Transactions on Power Electronics 28:2493-2502. https://doi.org/10.1109/TPEL.2012.2215344.</li> <li style="text-align: justify;">Jones M, Satiawan I, Bodo N. et al (2012) A Dual Five-Phase Space-Vector Modulation Algorithm Based on the Decomposition Method. IEEE Transactions on Industry Applications 48:2110-2120. https://doi.org/10.1109/TIA.2012.2226422.</li> <li style="text-align: justify;">Riedemann J, Clare JC, Wheeler PW. et al (2016) Open-End Winding Induction Machine Fed by a Dual-Output Indirect Matrix Converter. IEEE Transactions on Industrial Electronics 63:4118-4128. https://doi.org/10.1109/TIE.2016.2531020.</li> <li style="text-align: justify;">Kalaiselvi J, Srinivas S (2015) Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With Reduced CMV PWM Methods. IEEE Transactions on Industrial Electronics 62:144-152. https://doi.org/10.1109/TIE.2014.2336614.</li> <li style="text-align: justify;">Yang W, Panda D, Lipo TA. et al (2013) Open-winding power conversion systems fed by half controlled converters. IEEE Transactions on Power Electronics 28:2427-2436. https://doi.org/10.1109/TPEL.2012.2218259.</li> <li style="text-align: justify;">Nandi S, Toliyat A, Li X (2005) Condition Monitoring And Fault Diagnosis Of Electrical Motors – A Review. IEEE Transactions on Energy Conversion 20:719-729. https://doi.org/10.1109/TEC.2005.847955.</li> <li style="text-align: justify;">Siddique A, Yadava GS, Singh B (2005) A Review Of Stator Fault Monitoring Techniques of Induction Motors. IEEE Transactions on Energy Conversion 20:106-114. https://doi.org/10.1109/TEC.2004.837304.</li> <li style="text-align: justify;">Bae CJ, Lee DC, Nguyen TH (2019) Detection and identification of multiple IGBT open-circuit faults in PWM inverters for AC machine drives. IET Power Electronics 12:923–931. https://dx.doi.org/10.1049/iet-pel.2018.5188.</li> <li style="text-align: justify;">Guzman H, Duran MJ, Barrero F. et al (2014) Speed Control of Five-Phase Induction Motors With Integrated Open-Phase Fault Operation Using Model-Based Predictive Current Control Techniques. IEEE Transactions on Industry Electronics 61:4474-4484. https://doi.org/10.1109/TIE.2013.2289882.</li> <li style="text-align: justify;">Schreier L, Bendl J, Chomat M (2016) Operation of five-phase induction motor after loss of one phase of feeding source. Electrical Engineering 99:9-18. https://doi.org/10.1007/s00202-016-0370-9.</li> <li style="text-align: justify;">Zhou H, Zhao W, Liu G. et al (2017) Remedial Field-Oriented Control of Five-Phase Fault-Tolerant Permanent-Magnet Motor by Using Reduced-Order Transformation Matrices. IEEE Transactions on Industrial Electronics 64:169-178. https://doi.org/10.1109/TIE.2016.2599501.</li> <li style="text-align: justify;">Listwan J, Pieńkowski K (2016) Field-oriented control of five-phase induction motor with open-end stator winding. Archives of Electrical Engineering 65:395-410. https://doi.org/10.1515/aee-2016-0029.</li> <li style="text-align: justify;">Satiawan INW, Citarsa IBF, Wiryajati IK. et al (2014) Performance Comparison of PWM Schemes of Dual-inverter FED Five-phase Motor Drives. Electrical, Electronics and Computer Engineering 5:277-286. https://doi.org/10.14716/ijtech.v5i3.609.</li> <li style="text-align: justify;">Bodo N, Jones M, Levi E (2014) A Space Vector PWM With Common-Mode Voltage Elimination for Open-End Winding Five-Phase Drives With a Single DC Supply. IEEE Transactions on Industrial Electronics 61:2197-2207. https://doi.org/10.1109/TIE.2013.2272273.</li> </ol> <ol start="25"> <li style="text-align: justify;">Devanneaux V, Dagues B, Faucher J. et al (2003) An accurate model of squirrel cage induction machines under stator faults. Mathematics and Computers in Simulation 63:377-391. https://doi.org/10.1016/S0378-4754(03)00083-1.</li> <li style="text-align: justify;">Leboeuf N, Boileau T, Babak NM. et al (2012) Estimating Permanent-Magnet Motor Parameters Under Inter-Turn Fault Conditions. IEEE Transactions on Magnetics 48:963-966. https://doi.org/10.1109/TMAG.2011.2177642.</li> <li style="text-align: justify;">Soufi Y, Bahi T, Merabet H. et al (2013) Short Circuit between Turns in Stator Winding of Induction Machine Fault Detection and Diagnosis. Applied Mechanics and Materials 416-417:565-571. https://doi.org/10.4028/www.scientific.net/AMM.416-417.565.</li> <li style="text-align: justify;">Guezmil A, Berriri H, Pusca R. et al (2017) Detecting Inter-Turn Short-Circuit Fault in Induction Machine Using High-Order Sliding Mode Observer: Simulation and Experimental Verification. Journal of Control, Automation and Electrical Systems 28:532-540. https://doi.org/10.1007/s40313-017-0314-2.</li> </ol> Saad Khadar Copyright (c) 2020 Algerian Journal of Engineering and Technology 2020-02-06 2020-02-06 Experimental study of exfoliation corrosion-induced mechanical properties degradation of Aluminum alloys: 2024-T3 and 5083-H22 http://jetjournal.org/index.php/ajet/article/view/23 <p style="text-align: justify;">The objective of the present work were to study the influence of exfoliation corrosion (EFC) of 2024 and 5083 aluminum alloys on the mechanical properties degradation. Tensile test had been carried out on pre-corroded specimens, exposed to laboratory accelerated exfoliation corrosion solution. The analysis suggests that exfoliation exposure leads to decrease the mechanical properties of all materials. The effects of the grain boundary character distribution and precipitates on corrosion are discussed on the basis of experimental observations by Scanning Electron Microscope SEM combined with Energy Dispersive Spectroscopy EDS analysis. &nbsp;</p> <p style="text-align: justify;"><a href="https://doi.org/10.5281/zenodo.3653058"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3653058.svg" alt="DOI"></a></p> <p style="text-align: justify;"><strong>Cite as: </strong>Brahami, A., Fajoui, J., Bouchouicha, B. (2020). Experimental study of exfoliation corrosion-induced mechanical properties degradation of aluminum alloys: 2024-T3 and 5083-H22. <em>Algerian Journal of Engineering and Technology</em>. <em><a href="http://dx.doi.org/10.5281/zenodo.3653058">http://dx.doi.org/10.5281/zenodo.3653058</a></em></p> <p style="text-align: justify;"><strong>References</strong></p> <ol> <li style="text-align: justify;">Brahami, A., Fajoui, J., Bouchouicha, B. Exfoliation Corrosion Impact on Microstructure, Mechanical Properties, and Fatigue Crack Growth of Aeronautical Aluminum Alloy.&nbsp;<em>Journal of Failure Analysis and Prevention</em>, (2020). 1-11. https://doi.org/10.1007/s11668-020-00815-y</li> <li style="text-align: justify;">J. Summerson and D.O. Sprowls, Corrosion Behavior of Aluminum Alloys, in International Conference in Celebration of the Centennial of the Hall-Heroult Process. 1986. University of Virginia, Charlottes ville, Virginia.</li> <li style="text-align: justify;">Chen, Y., Liu, C., Zhou, J., Wang, X. (2017). Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions.&nbsp;International Journal of Fatigue,&nbsp;98, 269-278.</li> <li style="text-align: justify;">Liddiard,E.A.G., Whittaker J.A., Farmery H.K. Journal of the Institute of Metals, 89, 377-384 (1960-1961).</li> <li style="text-align: justify;">Zahavi, J., Yahalom, J. (1982). Closure to “Discussion of ‘Exfoliation Corrosion of AlMgSi Alloys in Water’[J. Zahavi and J. Yahalom (pp. 1181–1185, Vol. 129, No. 6)]”.&nbsp;Journal of The Electrochemical Society,&nbsp;129(12), 2878.</li> <li style="text-align: justify;">Conor P.C., James A.D., Collier R.N. (2004). Evaluation of Exfoliation Corrosion Damage to 7075-T6 Aluminum Alloy Aircraft Structural Components", Materials and Structures Group, Defense Technology Agency</li> <li style="text-align: justify;">Sprowls, D. O., Walsh, J. D., &amp; Shumaker, M. B. (1972). Simplified exfoliation testing of aluminum alloys. In&nbsp;Localized Corrosion—Cause of Metal Failure. ASTM International.38-65</li> <li style="text-align: justify;">Robinson, M. J., Jackson, N. C. (1999). Exfoliation corrosion of high strength Al-Cu-Mg alloys: effect of grain structure.&nbsp;Corrosion Engineering, Science, and Technology,&nbsp;34(1), 45-49</li> <li style="text-align: justify;">Robinson, M. J. (1982). Mathematical modelling of exfoliation corrosion in high strength aluminium alloys.&nbsp;Corrosion Science,&nbsp;22(8), 775-790.</li> <li style="text-align: justify;">Kelly, D. J., &amp; Robinson, M. J. (1993). Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090.&nbsp;Corrosion,&nbsp;49(10), 787-795.</li> <li style="text-align: justify;">Standard, A. (2001). G34-01: Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Al Alloys.&nbsp;ASTM International: West Conshohocken, PA, USA.</li> <li style="text-align: justify;">ASTM Standard E8-04, Standard Test Methods for Tension Testing of Metallic Materials [Metric], Part 03.01, Metals Mechanical Testing Elevated and Low-Temperature Tests Metallographic.</li> <li style="text-align: justify;">American Society for Testing and Materials (Filadelfia, Pennsylvania). (2004). ASTM G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM.</li> <li style="text-align: justify;">Brahami, A., Bouchouicha, B., Zemri, M., Fajoui, J. (2018). Fatigue crack growth rate, microstructure and mechanical properties of diverse range of aluminum alloy: a comparison.&nbsp;Mechanics and Mechanical Engineering,&nbsp;22(1), 329-339.</li> <li style="text-align: justify;">Pantelakis, S. G., Daglaras, P. G., Apostolopoulos, C. A. (2000). Tensile and energy density properties of 2024, 6013, 8090 and 2091 aircraft aluminum alloy after corrosion exposure.&nbsp;Theoretical and Applied Fracture Mechanics,&nbsp;33(2), 117-134.</li> <li style="text-align: justify;">Kamoutsi, H., Haidemenopoulos, G. N., Bontozoglou, V., Pantelakis, S. (2006). Corrosion-induced hydrogen embrittlement in aluminum alloy 2024.&nbsp;Corrosion Science,&nbsp;48(5), 1209-1224.</li> <li style="text-align: justify;">Andreatta, F., Terryn, H., &amp; De Wit, J. H. W. (2003). Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075-T6.&nbsp;Corrosion Science,&nbsp;45(8), 1733-1746.</li> </ol> Abdessamad Brahami Jamal Fajoui Benattou Bouchouicha Copyright (c) 2020 Algerian Journal of Engineering and Technology http://creativecommons.org/licenses/by-nc/3.0/ 2020-02-06 2020-02-06 Synthesis and characterization of schiff base of 3-[(2-Hydroxy-phenylimino)-methyl]-6-methoxy-quinolin-2- ol and its metal complexes and their evaluation for antibacterial and antifungal activity http://jetjournal.org/index.php/ajet/article/view/26 <p style="text-align: justify;">A Schiff base of 3-[(2-Hydroxy-phenylimino)-methyl]-6-methoxy -quinolin-2- ol was synthesized by a 1:1 molar condensation of 2-Hydroxy-6-methoxy-3-quinolinecarboxaldehyde and 2-aminophenol. The metal (II) complexes were synthesized by refluxing the ethanolic solutions of the Schiff base and the chloride salts of the metals. Melting point, decomposition temperature, solubility, elemental analysis, fourier transform infrared spectroscopy, magnetic susceptibility and molar conductivity measurements were used to characterized the Schiff base and its metal complexes. The Schiff base was yellow and has a melting point of 251 OC. The decomposition temperature of the Cd (II) and Cu (II) complexes were 282 and 270 OC respectively. The elemental analysis of the complexes established the formation of 1:1 metal - ligand ratio. The non-electrolytic nature of the complexes were revealed by the molar conductivity values. The behavior of the Schiff base and its coordination with the metal ions was suggested by the infrared spectral data via the azomethine nitrogen and hydroxyl oxygen after deprotonation. The solubility test of the Schiff base its metal complexes was carried out by using different solvent. The antibacterial and antifungal activity were performed and discussed.</p> <p><a href="https://doi.org/10.5281/zenodo.3653139"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3653139.svg" alt="DOI"></a></p> <p><strong>Cite as: </strong>Jabbi, A. M., Husaini, M., Aliyu, H. N. (2020). Synthesis and characterization of schiff base of 3-[(2-Hydroxy-phenylimino)-methyl]-6-methoxy-quinolin-2- ol and its metal complexes and their evaluation for antibacterial and antifungal activity. <em>Algerian Journal of Engineering and Technology</em>. http://dx.doi.org/ 10.5281/zenodo.3653139</p> <p style="text-align: justify;"><strong>References</strong></p> <ol> <li style="text-align: justify;">Abu-Dief, A. M., Mohamed, I. M. (2015). A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef university journal of basic and applied sciences, 4(2), 119-133. https://doi.org/10.106/j.bjbas.2015.05.004</li> <li style="text-align: justify;">Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Ismail, H., Bushra, M., McKeec, V., Bolted, M., (2016). Synthesis, characterization, biological and electrochemical evaluation of novel ether based on donor bidentate Schiff bases. <em>Journal of Molecular Structure</em>, 1116, 84–92.</li> <li style="text-align: justify;">Zoubi, W. A. (2013). Biological activities of schiff bases and their complexes: a review of recent works. <em>international journal of organic chemistry</em>. 3: 73-95.</li> <li style="text-align: justify;">Gwaram, N. S., Ali, M. H., Khaledi, H., Abdulla, A. M., Hamid, A., Hadi, A., Lin, T. K., Ching, C. L., and Ooi, C. L. (2012). Antibacterial Evaluation of Some Schiff Bases Derived from 2-Acetylpyridine and Their Metal Complexes, Molecules, 17(5), 5952-5971.</li> <li style="text-align: justify;">Arulmurugan, S., Kavitha, H. P. and Venkatraman, B.R. (2010). Biological Activities of Schiff Base and its Complexes: A Review. <em>Rasayan J. Chem</em>., 3, 385-410.</li> <li style="text-align: justify;">Da Silva, C. M., Silva, Daniel, L., Modolo, L. V., Alves, R. B., Resende, M. A., Martins, C. B., Fatima, A., Schiff bases: A short review of their antimicrobial activities, Journal of Advance Research, 2(1), 1-8.</li> <li style="text-align: justify;">Abdel-Rahman, L. H., Abu-Dief, A. M., Newair, E. F. and Hamdan, S. K. (2016). Some new nano-size Cr (III), Fe (II), Co (II), and Ni (II) complexes incorporating 2-((E)-(pyridine-2-ylimino)methyl) napthalen-1-ol ligand: Structural characterization, antimicrobial, antiviral assessment and DNA interaction. Journal of Photochemistry and PhotoBiology B: Biology, 160, 18–31(2016)<em>. </em></li> <li style="text-align: justify;">Qin, W., Long S., Panunzio, M., and Biondi, S. (2013). Schiff Bases: A Short Survey on an Evergreen Chemistry tool, Molecules. 18(10), 12264-12289.</li> <li style="text-align: justify;">[9] Wang, L., Wang, Y., Hou, Z. and Liu, Y. (2012). Synthesis and Fluorescence Property of novel Zn<sup>2+</sup> Schiff base Complex. <em>Advanced Materials Research</em>. 535: 1237-1240.</li> <li style="text-align: justify;">Siddappa, K. and Reddy, P. C. (2012). Synthesis, Spectral Characterization and Antimicrovial Studies of Transition Metal (II) Compleses with Schiff Base 3-[92-hydroxy-6-methoxyquinoline-3-ylmethylene)-amino]-2-methyl-3H-quinoline-4-one. <em>International Journal of Applied Biology and Phermaceutical </em> 3(3): 168-176.</li> <li style="text-align: justify;">Jorgensen, J. H. and Turnidge, J. D. (2003). Susceptibility Test Methods: dilution and Disk Diffution Methods. Manual of Clinical Microbiology, 8<sup>th</sup> American Society of Microbiology, Washington, DC. 1108.1127.</li> <li style="text-align: justify;">Eman, T. S. (2015). Synthesis, Characterization and Spectroscopic Studies of 2 – {{E} – hydroxyphenyl) imino) methyl} phenol Schiff base with Some Metal Complexes. <em>Journal of Al-Nahrain</em> <em>University</em>. 18(1): 39 – 45.</li> <li style="text-align: justify;">Abubakar, A. A., Yusuf, Y. and Hussaini, A. U. (2017). Synthesis and Characterization of Cu (II) and Zn (II) Schiff Base Complexes. <em>International Journal of Science and Applied Research</em>. 2(3): 8-16.</li> <li style="text-align: justify;">Abdullahi, O. S. and Gareth, M. W. (2013). Antimicrobial activity and Cu (II) complexes of Schiff bases derived from orthoaminophenol and salicylaldehyde derivatives. <em>Journal</em> <em>of chemical and pharmaceutical</em> <em>research, </em>5(10): 147 – 154.</li> <li style="text-align: justify;">El-ajaily, M. M., Maihub, A. A., Hudere, S. S. and Ben Saber, S.M. (2006). Nickel (II) Chelate of Schiff base derived from 4- dimethylaminobenzaldehyde with Cysteine. <em>Asian Journal of</em> <em>Chemistry, </em>18(4): 2427-2430.</li> <li style="text-align: justify;">Mounika, K., Anupama, B., Pragathi, J. and Gyanakumari, C. (2010). Synthesis, Characterization and Biological Activity of a Schiff base derived from 3-ethoxy salicyladehyde and 2- amino benzoic acid and its Transition Metal Complexes. <em>Journal of Scientific Research, </em>2(3): 513 – 524</li> <li style="text-align: justify;">Rasha, S. J. and Farah, M, I. (2012). Synthesis and Characterization of Tetradentate bissalicylaldehyde Schiff base with Some Transition Metal Complexes. <em>The First</em> <em>Scientific Conference of the College</em> <em>of Education for Pure Sciences, Alnahram</em> <em>University, </em> 124 – 131</li> <li style="text-align: justify;">Yahyazadeh A, Azimi V. (2013). Synthesis of Some Unsymmetrical New Schiff. <em>Eur Chem Bull.</em> 2(7):453–455.</li> </ol> Musa Husaini Muhammad Jabbi Abubakar Aliyu Habu Nuhu Copyright (c) 2020 Algerian Journal of Engineering and Technology 2020-02-07 2020-02-07 Kinetic and thermodynamic studies of malachite green adsorption using activated carbon prepared from desert date seed shell http://jetjournal.org/index.php/ajet/article/view/28 <p style="text-align: justify;"><br>The negative effect of high concentration of dyes in the aquatic environment on humans and aquatic plants prompted this research. The adsorption of hazardous malachite green (MG) from aqueous solution using activated carbon (DDAC) derived desert date seed shell was examined. Batch equilibrium technique was employed to study the effect of contact time (5-120 min), initial concentration (20-100 mg dm-3) and temperature (303-333 K) on the adsorption capacity of the prepared adsorbent. Experimental data were analyzed using five kinetic models: pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and Boyd models and it was found that the pseudo-second-order model fitted the adsorption data most with the highest correlation (R2 = 0.9999). The overall adsorption process appears to be jointly controlled by intraparticle diffusion and film diffusion mechanisms. Studies of thermodynamic behavior revealed a negative value for ∆G (-11.45 to 13.42 kJ mol-1), and a positive value for ∆H (8.39 kJ mol-1) and ∆S (0.065 kJ mol-1 K-1). These indicated the feasibility, endothermicity and spontaneity of the removal process. The results demonstrated that the adsorbent could be exploited in the removal of MG from aqueous solution.</p> <p style="text-align: justify;"><a href="https://doi.org/10.5281/zenodo.3659293"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3659293.svg" alt="DOI"></a></p> <p style="text-align: justify;"><strong>Cite as:</strong></p> <p style="text-align: justify;">Yunusa, U.,Usman, B., Ibrahim M. B. (2020). Kinetic and Thermodynamic Studies of Malachite Green Adsorption Using Activated Carbon Prepared from Desert Date Seed Shell. Algerian Journal of Engineering and Technology. <a href="http://dx.doi.org/10.5281/zenodo.3659293">http://dx.doi.org/10.5281/zenodo.3659293</a></p> <p style="text-align: justify;"><strong>References</strong></p> <ol> <li style="text-align: justify;">Azaman, S.A.H., Afandi, A., Hameed, B.H. and Mohd Din A.T. (2018). Removal of Malachite Green from Aqueous Phase Using Coconut Shell Activated Carbon: Adsorption, Desorption, and Reusability Studies. <em>Journal of Applied Science and Engineering</em>, 21(3):317-330.</li> <li style="text-align: justify;">Chowdhury, S., Mishra, R., Saha, P. and Kushwaha, P. (2011). Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green onto Chemically Modified Rice Husk. <em>Desalination</em>, 265 (1): 159-168</li> <li style="text-align: justify;">Ogugbue C.J. and Sawidis T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent. <em>Biotechnology Resource International</em>, Article 967925:1-11.</li> <li style="text-align: justify;">Chan, L.S., Cheung, W.H., Allen, S.J. and McKay, G. (2017). Equilibrium Adsorption Isotherm Study of Binary Dyes onto Bamboo Derived Activated Carbon. <em>HKIE</em> <em>Transactions</em>, 24(4):182-192.</li> <li style="text-align: justify;">Banerjee, S., Sharma, G.C., Gautam, R.K., Chattopadhyaya, M.C., Upadhyay, S.N. and Sharma, Y.C. (2016). Removal of Malachite Green, a Hazardous Dye from Aqueous Solutions Using Avena sativa (Oat) Hull as a Potential Adsorbent. <em>Journal of Molecular Liquids</em>, 213:162–</li> <li style="text-align: justify;">Raval, N.P., Shah, P.U. and Shah, N.K. (2017). Malachite Green ‘ a Cationic Dye’ and its Removal from Aqueous Solution by Adsorption. <em>Applied Water Science,</em> 7:3407-3445.</li> <li style="text-align: justify;">Tan, K.B., Vakili, M., Horris, B.A., Poh, P.E., Abdullah, A.Z. and Salamatinia, B. (2015). Adsorption of Dyes by Nanomaterials: Recent Developments and Adsorption Mechanisms. <em>Separation Purification Technology,</em> 150:242-292.</li> <li style="text-align: justify;">Tongpoothorn, W., Somsimee, O., Somboon, T. and Sriuttha, M. (2019). An Alternative and Cost-Effective Biosorbent Derived from Napier Grass Stem for Malachite Green Removal. <em>Journal of Materials and Environmental Sciences</em>, 10(8):685-695.</li> <li style="text-align: justify;">Lee, S., Park, J., Kim, S., Kang, S., Cho, J., Jeon, J., Lee, Y., and Seo, D. (2019). Sorption Behavior of Malachite Green onto Pristine Lignin to Evaluate the Possibility as a Dye Adsorbent by Lignin. <em>Applied Biological Chemistry</em>, 62(37):1-10.</li> <li style="text-align: justify;">Reis, H.C.O., Cossolin, A.S., Santos, B.A.P.,&nbsp; Castro, K.C.,&nbsp; Pereira, G.M.,&nbsp; Silva, V.C.,&nbsp; Sousa, P.T.,&nbsp; Dall’Oglio, E.L., Vasconcelos, L.G. and Morais E.B. (2018). Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution. <em>International Journal of Biotechnology and Bioengineering</em>, 12(4):118-126.</li> <li style="text-align: justify;">Caponi, N., Collazzo, G.C., Jahn, S.L., Datto, G.L., Mazutti, M.A. and Foletto, E.L. (2017). Use of Brazilian Kaolin as a Potential Low-cost Adsorbent for the Removal of Malachite Green from Colored Effluents.<em> Materials Research, </em>20(2):14-22.</li> <li style="text-align: justify;">Rinku, J., Shripal, S. and Hemant, P. (2015). Removal of Malachite Green Dye from Aqueous Solution Using Magnetic Activated Carbon.<em> Research Journal of Chemical Sciences</em>, 5(12): 38-43.</li> <li style="text-align: justify;">Bello, O.S. and Ahmad, M.A. (2012). Coconut (Cocos nucifera) Shell Based Activated Carbon for the Removal of Malachite Green Dye from Aqueous Solutions. <em>Separation Science and Technology</em>, 47: 903–912.</li> <li style="text-align: justify;">Sharma, P., Kaur, H. and Sharma, M. (2011). A Review on Applicability of Naturally Available Adsorbents for the Removal of Hazardous Dyes from Aqueous Waste. <em>Environmental Monitoring and Assessment,</em> 183(1-4):151-195.</li> <li style="text-align: justify;">Wang, X., Wang, S., Yin, X., Chen, J. and Zhu, L. (2014). Activated Carbon Preparation from Cassava Residue Using a Two-Step KOH Activation: Preparation, Micropore Structure and Adsorption Capacity. <em>Journal of Biobased Materials and Bioenergy</em>, 8(20):1-8</li> <li style="text-align: justify;">Hamdaoui, O., Saoudi, F., Chiha, M. and Naffrechoux, E. (2008). Sorption of Malachite Green by a Novel Sorbent, Dead Leaves of Plane Tree: Equilibrium and Kinetic Modeling. <em>Chemical Engineering Journal,</em> 143:73-84.</li> <li style="text-align: justify;">Yong S.K., Zaid, M.K.Z., Jamion, N.A. and Omar, Q. (2017). Sorption of Malachite Green by Cassava Stem Biochar: Kinetic and Isotherm Studies. <em>Journal of Fundamental and Applied Sciences, </em>9(6S):273-287.</li> <li style="text-align: justify;">Lee, Y.C., Amini, M.H.M., Sulaiman, N.S., Mazlan, M. and Boon, J.G. (2018). Batch Adsorption and Isothermic Studies of Malachite Green Dye Adsorption using Leucaena leucocephala Biomass as Potential Adsorbent in Water Treatment. <em>Songklanakarin</em> <em>Journal of Science and Technology</em>, 40 (3):563-569.</li> <li style="text-align: justify;">Santhi, T., Manonmani, S., Vasantha, V.S. and Chang, Y.T. (2016). A New Alternative Adsorbent for the Removal of Cationic Dyes from Aqueous Solution. <em>Arabian Journal of Chemistry,</em> 9(S1):S466-S474.</li> <li style="text-align: justify;">Dahri, M.K., Kooh, M.R.R. and Lim, L.B.L. (2014). Water Remediation Using Low Cost Adsorbent Walnut Shell for Removal of Malachite Green: Equilibrium, Kinetics, Thermodynamic and Regeneration Studies. <em>Journal of Environmental Chemical Engineering,</em> 2: 1434–1444.</li> <li style="text-align: justify;">Chowdhury, S. and Saha, P. (2011). Utilization of a Domestic Waste Eggshells for Removal of Hazardous Malachite Green from Aqueous Solutions. <em>Environmental Progress and Sustainable Energy, </em>31(3):415-425.</li> <li style="text-align: justify;">Langergren, S. (1898). About the Theory of so-called Adsorption of Soluble Substances. <em>Band</em>. 24(4): 1-39</li> <li style="text-align: justify;">Wu, H., Chen, R., Du, H., Zhang, J., Shi, L., Qin, Y., Yue, L. and Wang, J. (2019). Synthesis of Activated Carbon from Peanut Shell as Dye adsorbent for Wastewater Treatment.<em> Adsorption Science and Technology, </em>37(1-2):34-48.</li> <li style="text-align: justify;">Ho, Y.S. and McKay, G. (1999). Pseudo-Second-Order Model for Sorption Processes. <em>Process Biochemistry,</em> 34: 451-465.</li> <li style="text-align: justify;">Oyelude, E.O., Awudza, J.A.M. and Twumasi, S.K. (2018). Removal of Malachite Green from Aqueous Solution Using Pulverized Teak Leaf Litter: Equilibrium, Kinetic and Thermodynamic Studies. <em>Chemistry Central Journal</em> 12(81):2-10.</li> <li style="text-align: justify;">Mashkoor, F., Nasar, A., Inamuddin and Asiri, A. M. (2018). Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye Using Tectona grandis Sawdust as a Very Low-Cost <em>Scientific Reports</em>, 8:8314.</li> <li style="text-align: justify;">Saechiam, S. and Sripongpun, G. (2019). Adsorption of Malachite Green from Synthetic Wastewater Using Banana Peel Adsorbents.<em> Songklanakarin Journal of Science and Technology</em>, 41(4):21-29.</li> <li style="text-align: justify;">Chien, S.H. and Clayton, W.R. (1980). Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. <em>Soil Science Society,</em> 44: 265-268.</li> <li style="text-align: justify;">Weber, W.J. and Morris J.C.J. (1963). Kinetics of Adsorption on Carbon from Solutions. Sanitary Engineering Division ASCE, 89: 31-60.</li> <li style="text-align: justify;">Ahmad, M.J. and Dhedan, S.K. (2012). Equlibrium Isotherms and Kinetics Modeling of Methylene Blue Adsorption on Agricultural Waste-Activated Carbon. <em>Fluid Phase Equilibria,</em> 317: 9-14.</li> <li style="text-align: justify;">Gholibatar, S. and Tahermansouri, H. (2017). Kinetic and Multi-Parameter Isotherm Studies of Picric Acid Removal from Aqueous Solution by Carboxylated Multi-walled Carbon Nanotubes in the Presence and Absence of Ultrasound.<em> Carbon Letters, </em>22:14-24.</li> <li style="text-align: justify;">Reichenberg, D. (1953). Properties of Ion Exchange Resins in Relation to their Structure. Part III: Kinetics of Exchange. <em>Journal of American Chemical Society,</em> 75:589-598.</li> <li style="text-align: justify;">Ahmad, M.A., Ahmad, N. and Bello, O.S. (2014). Adsorptive Removal of Malachite Green Dye Using Durian Seed-Based Activated Carbon. <em>Water Air Soil Pollution</em>, 225:1-18.</li> <li style="text-align: justify;">Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., Yuan, Z. and Chen, J. (2012). Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-activated Multiwalled Carbon Nanotubes. <em>Applied Materials and Interfaces,</em> 4:5749-5760.</li> <li style="text-align: justify;">Laabd, M., Chafai, H., Essekri, A., Elamine, M., Al-muhtaseb, S.A., Lakhmiri, R., and Albourine, A. (2017). Single and Multi-component Adsorption of Aromatic Acids Using an Eco-friendly Polyaniline-based Biocomposite. <em>Sustainable Materials and Technologies, </em>12:35-43.</li> <li style="text-align: justify;">Rai, M.K., Giri, B.S., Nath Y., Bajaj, H., Soni, R.P., Singh, R.S. and Rai., B.N. (2018). Adsorption of Hexavalent Chromium from Aqueous Solution by Activated Carbon Prepared from Almond Shell: Kinetics, Equilibrium and Thermodynamics Study. <em>Journal of Water Supply: Research and Technology</em>, 67(8):724-737.</li> </ol> Umar Yunusa Usman Bishir Muhammad Bashir Ibrahim Copyright (c) 2020 Algerian Journal of Engineering and Technology 2020-02-08 2020-02-08 Vulnerability of potential soil erosion and risk assessment at hilly farms using InSAR technology http://jetjournal.org/index.php/ajet/article/view/29 <p>Soil erosion is a serious environmental challenge which is persistently diminishing the available land resource in many places around the world, particularly the highlands areas. The traditional approach of estimating the magnitude of erosion is tedious, costly and considerably time consuming. This study is aimed at assessing the risk level associated with soil erosion at hilly areas of Cameron Highlands through Interferometric Synthetic Aperture Radar (InSAR). The digital elevation model with 5 m resolution was utilized to generate the slope map for the highlands. Soil erosion rates was estimated using universal soil loss equation, while information about land use and cover were sourced from relevant government agencies. The analysis shows that, there was about 217.5 km<sup>2</sup> (30.5%) of highlands fall under severely steep zone with slope ≥ 45<sup>o</sup>. Moreover, erosion risk assessment indicated that; 66.3%, 11.4%, 11.7% and 10.8% of the severe sloppy lands are classified as very low to high susceptible to soil erosion respectively. In general, the risk of soil erosion is relatively low and could be attributed to large vegetation coverage despite steep slopes. However, there is need to deploy a control measures to reduce soil disturbance activities on highlands with extremely steep slope as a proactive measures to minimize the effect of potential soil erosion</p> <p><a href="https://doi.org/10.5281/zenodo.3841100"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3841100.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Nasidi, N. M., A. Wayayok, A. F. Abdullah, and M. S. M. Kassim (2020). Vulnerability of Potential Soil Erosion and Risk Assessment at Hilly Farms using InSAR Technology. <em>Algerian Journal of Engineering and Technology</em>, <em><a href="http://dx.doi.org/10.5281/zenodo.3841100">http://dx.doi.org/10.5281/zenodo.3841100</a></em></p> <p><strong>References</strong></p> <ol> <li>González-Morales, S.B., Mayer, A. &amp; Ramírez-Marcial, N. (2018). Assessment of soil erosion vulnerability in the heavily populated and ecologically fragile communities in Motozintla de Mendoza, Chiapas, Mexico. Solid Earth. 9, 3, 745–757.</li> <li>Pandey, A., Himanshu, S.K., Mishra, S.K. &amp; Singh, V.P. (2016). Physically based soil erosion and sediment yield models revisited. 147, 595–620.</li> <li>Neal, M.R., Nearing, M.A., Vining, R.C., Southworth, J. &amp; Pfeifer, R.A. (2005). Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena. 61, 2-3 SPEC. ISS., 165–184.</li> <li>Ghani, A.A., Lo, C.H. &amp; Chung, S.L. (2013). Basaltic dykes of the Eastern Belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. <em>Journal of Asian Earth Sciences</em>. 77, 127–139.</li> <li>Pradhan, B., Chaudhari, A., Adinarayana, J. &amp; Buchroithner, M.F. (2012). Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. <em>Environmental Monitoring and Assessment. </em>184, 2, 715–727.</li> <li>Sholagberu, A.T., Ul Mustafa, M.R., Wan Yusof, K. &amp; Ahmad, M.H. (2016). Evaluation of rainfall-runoff erosivity factor for cameron highlands, Pahang, Malaysia. <em>Journal of Ecological Engineering</em>. 17, 3, 1–8.</li> <li>Yoder, K.M. and D. c. (1997). Predicting Soil Reosion by Water: A Guide to conservation planning with Revised Universal Soil Loss Equation (RUSLE). United stated deparment of Agriculture, Agriculture Handbbooh 703.</li> <li>Liu, Y.H., Li, D.H., Chen, W., Lin, B.S., Seeboonruang, U. &amp; Tsai, F. (2018). Soil erosion modeling and comparison using slope units and grid cells in Shihmen reservoir watershed in Northern Taiwan. Water (Switzerland). 10, 10.</li> <li>Abdullah, A.F., Amiri, E., Daneshian, J., Teh, C.B.S., Wayayok, A., Massah Bavani, A. &amp; Ahmadzadeh Araji, H. (2018). Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management. 205, May, 63–71.</li> <li>Azim, F., Shakir, A.S., Habib-ur-Rehman &amp; Kanwal, A. (2016). Impact of climate change on sediment yield for Naran watershed, Pakistan<em>. International Journal of Sediment Research</em>. 31, 3, 212–219.</li> <li>Serdeczny, O., Adams, S., Baarsch, F., Coumou, D., Robinson, A., Hare, W., Schaeffer, M., Perrette, M. &amp; Reinhardt, J. (2017). Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Regional Environmental Change. 17, 6, 1585–1600.</li> <li>Razali, A., Syed Ismail, S.N., Awang, S., Praveena, S.M. &amp; Zainal Abidin, E. (2018). Land use change in highland area and its impact on river water quality: a review of case studies in Malaysia. <em>Ecological Processes</em>. 7, 1, 19.</li> <li>Mispan, M.R., Haron, S.H., Ismail, B.S., Abd Rahman, N.F., Khalid, K. &amp; Abdul Rasid, M.Z. (2015). The Use of Pesticides in Agriculture Area, Cameron Highlands. <em>International Journal of Scientific Progress and Research</em>. 15, 1, 19–22.</li> <li>Arrow, B., Lifton, C., Han, C. &amp; an, T. (2005). Sustainable Development in the Cameron Highlands, Malaysia of streams is vulnerable to eroded silt, agricultural pollution and sewage<em>. Journal of Environmental Management</em>. 6, 41–57.</li> <li>Van der Knijff, J.M., Jones, R.J.A. &amp; Montanarella, L. (2000). Soil Erosion Risk Assessment in Europe. EUR 19044 EN. Luxembourg: Office for Official Publications of the European Communities. EUR 19044, EN, 32 pp.</li> <li>Berzani Gasim, Mazlin Mokhtar, Salmijah Surif, Mohd. Ekhwan Toriman, S.A.R. and P.I.L. (2012). Analysis of Thirty Years Recurrent Floods of the Pahang River, Malaysia. <em>Asian Journal of Earth Sciences</em>. 5, 1, 25–35.</li> <li>Oliver, T.H., Gillings, S., Pearce-Higgins, J.W., Brereton, T., Crick, H.Q.P., Duffield, S.J., Morecroft, M.D. &amp; Roy, D.B. (2017). Large extents of intensive land use limit community reorganization during climate warming. <em>Global Change Biology</em>. 23, 6, 2272–2283.</li> <li>Zakaria, N.A., Ghani, A.A. &amp; Chang, C.K. eds. (2012). Application of Green Infrastructures for Solving Sustainable Urban Stormwater Management Challenges. Department of Irrigation and Drainage (DID) Malaysia.</li> <li>Fagbohun, B.J., Anifowose, A.Y.B., Odeyemi, C., Aladejana, O.O. &amp; Aladeboyeje, A.I. (2016). GIS-based estimation of soil erosion rates and identification of critical areas in Anambra sub-basin, Nigeria. Modeling Earth Systems and Environment. 2, 3, 159.</li> <li>Nicu, I.C. &amp; Asăndulesei, A. (2018). GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? <em>Geomorphology</em>. 314, 27–41.</li> <li>Teh, S.H. (2011). Soil Erosion Modeling Using RUSLE and GIS on Cameron Highlands, Malaysia for Hydropower Development. RES | the School for Renewable Energy Science. 6–8.</li> <li>Madsen, S. N., &amp; Zebker, H. A. (1998). Imaging Radar Interferometry. In <em>Manual of Remote Sensing, Vol. 2, Principles and Applications of Imaging Radar, Chapter 6, </em> 349–380. John Wiley &amp; Sons</li> <li>Basher, L., Betts, H., Lynn, I., Marden, M., McNeill, S., Page, M. &amp; Rosser, B. (2018). A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand. Geomorphology. 307, 93–106.</li> <li>Wayayok, Aimrun, Nasidi NM, A.F.A. (2018). Erosion and Sediment Control guidelines for Agricultural Activities in Hilly Areas: Case Study of Cameron Highlands.</li> <li>Wischmeier, W., &amp; Smith, D. (1978). Predicting Rainfall Erosion Losses- A Guide to Consrvation Planning. U.S. Department of Agriculture Handbook. U S. Department of Agriculture.</li> <li>Smith, D., &amp; Whitt, D. (1947). Estimating Soil Losses from Field Ares of Claypan Soil. Soil Science Society of America Proceedings, (1947), 485–490.</li> <li>Duan, X., Gu, Z., Li, Y. &amp; Xu, H. (2016). The spatiotemporal patterns of rainfall erosivity in Yunnan Province, southwest China: An analysis of empirical orthogonal functions. Global and Planetary Change. 144, 82–93.</li> <li>Fenta, A.A., Yasuda, H., Shimizu, K., Haregeweyn, N., Kawai, T., Sultan, D., Ebabu, K. &amp; Belay, A.S. (2017). Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. <em>Hydrological Processes</em>. 31, 25, 4555–4567.</li> <li>Qin, W., Guo, Q., Zuo, C., Shan, Z., Ma, L. &amp; Sun, G. (2016). Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010. <em>Catena</em>. 147, 177–186.</li> <li>Bols, P. (1978). The Iso-erodent Map of Java and Madura. Belgian Technical Assistance Project ATA 105, Soil Research Institute, Bogor. Choy, Indonesia.</li> <li>Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.A., Naderi, M., Dematte, J.A.M. &amp; Kerry, R. (2016). Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. <em>Geomorphology</em>. 273, 385–395.</li> <li>Yang, F. &amp; Lu, C. (2015). Spatiotemporal variation and trends in rainfall erosivity in China’s dryland region during 1961-2012. <em>Catena</em>. 133, 362–372.</li> <li>Amanambu, A. C.; Li, L.; Egbinola, C. N.; Obarein, O. A.; Mupenzi, C.; Chen, D., Amanambu, A.C., Li, L., Egbinola, C.N., Obarein, O.A., Mupenzi, C. &amp; Chen, D. (2019). Spatio-temporal variation in rainfall-runo ff erosivity due to climate change in the Lower Niger Basin, West Africa. <em>CATENA</em>. 172, September 2018, 324–334.</li> <li>Tenaga National Berhad Research (2005). Progress Report 5: An Impact Study of Different Land Use Type to Hydro Power Generation in Cameron Highlands.</li> <li>Li, X. &amp; Ye, X. (2018). Variability of rainfall erosivity and erosivity density in the Ganjiang River Catchment, China: Characteristics and influences of climate change. Atmosphere. 9, 2. Pp 202 -218</li> <li>Pheerawat, P. &amp; Udmale, P. (2017). Impacts of climate change on rainfall erosivity in the Huai Luang watershed, <em> Atmosphere</em>. 8, 8. 431- 446</li> </ol> Nuraddeen Mukhtar Nasidi Aimrum Wayayok Ahmad Fikri Abdullah Muhamad Saufi Mohd Kassim Copyright (c) 2020 Algerian Journal of Engineering and Technology https://creativecommons.org/licenses/by-nc/4.0 2020-05-23 2020-05-23 An overview on use of renewable solar energy in desiccant based thermal cooling systems http://jetjournal.org/index.php/ajet/article/view/20 <p>The use of thermal energy produced by renewable solar heat is an interesting option for desiccant regeneration in comfort space cooling system. Various options available for collecting the solar radiations to provide reactivation heat for desiccant regeneration in desiccant assisted dehumidification and cooling system. This means of thermal cooling is economically viable as well as environment friendly. The integration of different solar collectors with the desiccant cooling cycle is resulted to the green cooling as it eliminates the use of CFC based ozone depleting refrigerants and CO<sub>2</sub> as green house gases which is responsible for global warming. An overview is presented to introduce different configurations of the combined system and performance evaluation of the same under different climatic situations.</p> <p><a href="https://doi.org/10.5281/zenodo.3823319"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3823319.svg" alt="DOI"></a></p> <p><strong>Cite as:</strong></p> <p>Jani, D.B. (2020). An overview on use of renewable solar energy in desiccant based thermal cooling systems. <em>Algerian Journal of Engineering and Technology</em>, <a href="http://dx.doi.org/10.5281/zenodo.3823319">http://dx.doi.org/10.5281/zenodo.3823319</a></p> <p>References</p> <ol> <li>Jurinak, J. J., Mitchell, J. W., and Beckman, W. A. Open-cycle desiccant air conditioning as an alternative to vapor compression cooling in residential applications. <em>Journal of Solar Energy Engineering</em> 1984;106:252-260.</li> <li>Jurinak, J.J. Open cycle solid desiccant cooling- components models and system simulation. <em>PhD thesis</em>, Wisconsin, Madison, USA.</li> <li>Stabat, P. Modelisation de components de systems de climatisation mettant en oeuvre l’adsorption et l’evaporation d’eau. <em>PhD thesis</em>, Ecole des Mines, Paris.</li> <li>Kang, T.S., and Maclaine-cross, I.L. High performance solid desiccant open cooling cycles. <em>Journal of Solar Energy Engineering</em> 1989;111:176-183.</li> <li>Lavan, Z., Monnier, J.B., and Worek, W.M. Second law analysis of desiccant cooling systems. <em>Journal of Solar Energy Engineering</em> 1982;104:229-236.</li> <li>Pons, M., and Kodama, A. Entropic analysis of adsorption open cycles for air conditioning. Part I: first and second law analysis. <em>International Journal of Energy Research</em> 2000;24:251-262.</li> <li>Maalouf, C., Wurtz, E., Mora, L., and Allard, F. <em>Optimization and study of autonomous solar desiccant cooling system</em>. Palenc, Santorini, Greece.</li> <li>Maalouf, C. Etude du potential de rafraichssement passif par desiccantion avec regeneration par panneaux solarires, <em>PhD thesis</em>, La Rochelle.</li> <li>Henning, H.M., Erpenbeck, T., Hingenburg, C., and Santamaria, I.S. The potential for solar energy use in desiccant cooling cycles. <em>International journal of Refrigeration</em> 2001;24:220-229.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2017). A critical review on solid desiccant based hybrid cooling systems. <em>International Journal of Air-conditioning and Refrigeration</em> 25, 1-10.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). A critical review on application of solar energy as renewable regeneration heat source in solid desiccant – vapor compression hybrid cooling system. <em>Journal of Building Engineering</em> 18, 107-124.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). Performance analysis of a solid desiccant assisted hybrid space cooling system using TRNSYS. <em>Journal of Building Engineering</em> 19, 26-35.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). Investigations on effect of operational conditions on performance of solid desiccant based hybrid cooling system in hot and humid climate. <em>Thermal Science and Engineering Progress</em> 7, 76-86.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2018). <em>Applications of solar energy</em>. Springer, Singapore, ISBN 978-981-10-7205-5.</li> <li>Dadi, M.J., Jani, D.B. (2019). Solar Energy as a Regeneration Heat Source in Hybrid Solid Desiccant – Vapor Compression Cooling System – A Review. <em>Journal of Emerging Technologies and Innovative Research</em> 6 (5), 421-425.</li> <li>Jani, D.B., Mishra, M., and Sahoo, P.K. (2016). Solid desiccant air conditioning – A state of the art review. <em>Renewable and Sustainable Energy Reviews</em> 60, 1451–1469.</li> <li>Jani, D.B., Shah, N., Panchal, N. A review on application of desiccant dehumidification – vapor compression hybrid cooling system in hot-humid climates. <em>International Journal of Innovative and Emerging Research in Engineering</em> 2;2018:1-5.</li> <li>Jani, D.B., Bhabhor, K., Dadi, M., et al. A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle. <em>Journal of Thermal Analysis and Calorimetry</em> 2019;DOI:10.1007/s10973-019-08968.</li> <li>Bhabhor, K., Jani, D.B. Progressive development in solid desiccant cooling: A review. <em>International Journal of Ambient Energy</em> 2019;DOI:10.1080/01430750.2019.1681293.</li> <li>Matsuki, K., Saito, Y. Desiccant cooling R and D in Japan. <em>ASHRAE Transaction Symposia</em> 0877;DA: 77:1:426-40.</li> <li>Hajji A, Worek WM, Levan Z. Dynamic analysis of closed-cycle solar adsorption refrigerator using two adsorbent-adsorbate pairs. <em>ASME journal of Solar Energy Engineering</em> 1991;113-73-9.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network. <em>Applied Thermal Engineering</em> 98:1091–1103.</li> <li>Biswas P, Kim S, Miller A. A compact low pressure drop desiccant bed for solar air conditioning application: analysis and design. <em>ASME Journal of Solar Energy Engineering</em> 1984;106:153.</li> <li>Jani, D.B., M. Mishra, and P.K. Sahoo. 2015. Performance studies of hybrid solid desiccant - vapor compression air-conditioning system for hot and humid climates. <em>Energy and Buildings</em> 102:284-292.</li> <li>Duffie JA, Beckmann WA. Solar Engineering of Thermal Process. New York: Wiley, 1980.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Performance prediction of solid desiccant - vapor compression hybrid air-conditioning system using artificial neural network. <em>Energy</em> 103: 618-629.</li> <li>Saito Y. Regeneration characteristics of adsorbent in the integrated desiccant/collector. <em>ASME</em> <em>Journal of Solar Energy Engineering</em> 1993;115:169-75.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Experimental investigation on solid desiccant – vapor compression hybrid air- conditioning system in hot and humid weather. <em>Applied Thermal Engineering</em> 104:556–564.</li> <li>Henning, H.M. (2001). The potential of solar energy use in desiccant cooling cycles. <em>International Journal of Refrigeration</em> 24 (3), 220–229.</li> <li>Vyas, Vedant, D.B. Jani. 2016. An overview on application of solar thermal power generation. <em>International Journal of Engineering Research and Allied Sciences</em> 01:1-5.</li> <li>Crofoot, L., and Harrison, S. (2012). Performance evaluation of a liquid desiccant solar air conditioning system. <em>Energy Procedia</em> 30, 542–550.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2016. Exergy analysis of solid desiccant - vapor compression hybrid air conditioning system. <em>International Journal of Exergy</em> 20:517-535.</li> <li>Buker, M.S., and Riffat, S.B. (2015). Recent developments in solar assisted liquid desiccant evaporative cooling technology review. <em>Energy and Buildings</em> 96, 95–108.</li> <li>Jani, D.B., M. Mishra, and P.K.Sahoo. 2013. Simulation of solar assisted solid desiccant cooling systems using TRNSYS. <em>Proceedings of the 22<sup>th</sup> National and 11<sup>th</sup> International ISHMT-ASME Heat and Mass Transfer Conference (ISHMT-ASME-2013)</em>, IIT, Kharagpur, Dec 28-31, pp. 1-7.</li> <li>Vyas, Vedant, D.B. Jani, P.K. Brahmbhatt. 2016. A comprehensive study on application of renewable solar energy in thermal power generation. <em>National Conference on Emerging Research Trends in Engineering (NCERTE-2016), VGEC Chandkheda, Institute for Plasma Research (IPR) and CTE Gandhinagar, Ahmedabad</em>, Apr 4-6, pp. 620-625.</li> <li>Baniyounes, A.M., Rasul, G.L., and Khan, MMM. Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia. <em>Renewable and Sustainable Energy Reviews</em> 2012;16:6423-6431.</li> <li>Li, Y., Lu, L., and Yang, H. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air conditioning system for application in Hong Kong. <em>Solar Energy</em> 2010;84:2085-2095.</li> </ol> D.B. Jani Copyright (c) 2020 Algerian Journal of Engineering and Technology https://creativecommons.org/licenses/by-nc/4.0 2020-05-12 2020-05-12