Impact of climate change on the spatiotemporal variability of a coastal ecosystem in the Tunisian Sahel

  • Safa Bela Fekih Boussema High institute of Agronomic Science of ChottMariem (ISA-CM), Department of Horticultural Sciences and Landscape, Sousse University, B.P 47.4042 ChottMeriem Sousse-Tunisia
  • Balkis Chaabane High institute of Agronomic Science of ChottMariem (ISA-CM), Department of Horticultural Sciences and Landscape, Sousse University, B.P 47.4042 ChottMeriem Sousse-Tunisia
  • Faiza Khebour Allouche National Agronomic Institute of Tunis, Lr GREEN TEAM (LR17AGR01), Carthage University, B.P 43, Avenue Charles Nicolle 1082 Tunis Mahrajène-Tunisia.
  • Raya Bel Haj Salah National School of Architecture and Urbanism, Carthage University-Tunisia.
Keywords: wetlands, GIS, Google Earth, radiometric indexes, changes, Tunisi

Abstract

Wetlands are some of the most important ecosystems on Earth. Despite their importance for water and carbon cycle regulation, wildlife survival and economic value. Furthermore, wetlands are experiencing rapid degradation due to severe transformations.  They have been polluted and declined dramatically as land cover has changed in many regions. Whereas, human activities along with severe climate changes have led to critical loss and degradation of these ecosystems. This study evaluates changes of Halq El Mingel wetland, Tunisia, between 2006 and 2017. Spatial and temporal dynamics of wetland changes were quantified using Landsat and Google Earth images and three radiometric indexes have been calculated; Normalized Difference Vegetation Index, Normalized Difference Water Index and Salinity Index. Results revealed that important spatial and temporal variations are detected for each index.Also, the area of wetland in Hergla city decreased significantly over the last 10 years from 1146.7 ha to 806.6 ha respectively. A notable change is the shrinkage of the wetland area during 2006-2017 period which is linked to the decline of rainfall over the years. This study proposes a methodology to monitor changes in wetland using geospatial technology  and thus to support decision-making for sustainable management.

DOI

Cite as:

Bel Fekih Bousemma S, Chaabane B, Khebour Allouchea F, Bel Haj Salah R. Impact of climate change on the spatiotemporal variability of a coastal ecosystem in the Tunisian Sahel. Alger. J. Eng. Technol. 2021, 5:72-79. http://dx.doi.org/10.5281/zenodo.5780189

References

  1. Boussema S., Allouche F., Chaabane B. Tools and
    Indicators for Integrated Wetland Monitoring : Case of Hergla Wetland –Tunisia. European Academic Research. 2020, 8 (6) : 3230-3245. http://www.euacademic.org/UploadArticle/4516.pdf
  2. Sader, S.A., Ahl, D., Liou, W.S. Accuracy of landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sensing of Environment. 1995, 53: 133–144.
  3. Lyon, J.G., Lopez, R.D., Lyon, L.K., Lopez, D.K. Wetland landscape characterization: GIS, remote sensing and image analysis. CRC Press, Boca Raton, FL. 2001.
  4. Weiers, S., Bock, M., Wissen, M., &Rossner, G. Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landsc Urban Plan. 2004, 67: 43– 65.
  5. Rebelo, L.M., Finlayson, C.M., Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management. 2009, 90 : 2144–2153.
  6. Mahmud M.S, Masrur A., Ishtiaque A., Haider F., Habib U. Remote Sensing & GIS Based Spatio-Temporal Change Analysis of Wetland in Dhaka City, Bangladesh. Journal of Water Resource and Protection, 2011, 3: 781-787. https://doi.org/10.4236/jwarp.2011.311088
  7. Anees, M.T., Javed, A. and Khanday, M.Y. Spatio-Temporal Land Cover Analysis in Makhawan Watershed (M.P.), India through Remote Sensing and GIS Techniques.Journal of Geographic Information System. 2014, 6: 298- 306. http://dx.doi.org/10.4236/jgis.2014.64027
  8. Hassan, M.A., Ratna, S.J., Hassan, M. and Tamanna, S. Remote Sensing and GIS for the Spatio-Temporal Change Analysis of the East and the West River Bank Erosion and Accretion of Jamuna River (1995-2015), Journal of Geoscience and Environment Protection. 2017, 5: 79-92. https://doi.org/10.4236/gep.2017.59006
  9. Bedoui C.. Study of Vulnerable and Water Erosion Risk Areas in Sareg Catchment (Central Tunisia) Using Remote Sensing, GIS And P.A.P/R.A.C. Qualitative Approach, International Journal of Environment and Geoinformatics. 2020, 7(1): 33-44 https://doi.org/10.30897/ijegeo.623877
  10. Convention on Wetlands (previously The Ramsar Convention Manual). Ramsar Convention Secretariat, Gland, Switzerland. 2016.
  11. Barducci, A.; Guzzi, D.; Marcoionni, P.; Pippi, I. Aerospace wetland monitoring by hyperspectral imaging sensors: A case study inthecoastal zone of San Rossore Natural Park. J.Environ. Manag. 2009, 90: 2278–2286.
  12. Costanza, R., R. de Groot, P. Sutton, S. Van der Ploeg, S. J. Anderson, I. Kubiszewski, S. Farber, and R. Kerry Turner. Changes in the Global Value of Ecosystem Services. Global Environmental Change. 2014, 26: 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002.
  13. Mitsch, W. J., and J. G. Gosselink. Wetlands. Hoboken. 4th ed. Hoboken, New Jersey : John Wiley & Sons. 2007.
  14. Sabater, S., A. Butturini, J.-C. Clement, T. Burt, D. Dowrick, M. Hefting, V. Matre, G. Pinay, C. Postolache, and M. Rzepecki. Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation. Ecosystems. 2003, 6 (1): 20–30. https://doi.org/10.1007/ s10021-002-0183-8.
  15. Verhoeven, J. T. A., B. Arheimer, C. Yin, and M. M. Hefting. Regional and Global Concerns over Wetlands and Water Quality.” Trends in Ecology & Evolution. 2006, 21 (2): 96–103. https://doi.org/10.1016/j.tree.2005.11.015.
  16. De Groot, R., M. Stuip, M. Finlayson, and N. Davidson. Valuing Wetlands: Guidance for Valuing the Benefits Derived from Wetland Ecosystem Services. Ramsar Technical Report No 3, CBD Technical Series No 27. 2006. https://www.cbd.int/doc/ publications/cbd-ts-27.pdf.
  17. Finlayson, C. M., J. A. Davis, P. A. Gell, R. T. Kingsford, and K. A. Parton. The Status of Wetlands and the Predicted Effects of Global Climate Change: The Situation in Australia. Aquatic Sciences. 2003, 75 (1): 73–93. https://doi.org/10.1007/ s00027-011-0232-5.
  18. Gardner, R. C., S. Barchiesi, C. Beltrame, C. M. Finlayson, T. Galewski, I. Harrison, M. Paganini, C. Perennou, D. Pritchard, and A. Rosenqvist. State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. 2015. https://www.ramsar.org/sites/default/files/ documents/library/bn7e_0.pdf
  19. Ávila D.M, Soto Barrera V.C and Lara Z.M..Spatio-temporal modelling of wetland ecosystems using Landsat time series: case of the BajoSinú Wetlands Complex (BSWC)– Córdoba– Colombia, Annals of GIS. 2019, 25 (1): 231-245, https://doi.org/10.1080/19475683.2019.1617347
  20. Fisher, B., and Turner R.K. Ecosystem Services: Classification for Valuation. Biological Conservation. 2008, 141 (5): 1167–1169. doi:10.1016/j.biocon.2008.02.019.
  21. Mitsch, W. J., B. Bernal, A. M. Nahlik, Ü. Mander, L. Zhang, C. J. Anderson, S. E. Jørgensen, and H. Brix. Wetlands, Carbon, and Climate Change. Landscape Ecology. 2013, 28 (4): 583–597. https://doi.org/10.1007/s10980-012-9758-8.
  22. Millennium Ecosystem Assessment (MEA). Ecosystems And Human Well-Being: Wetlands And Water Synthesis.  World Resources Institute, Washington, DC. 2005: 68.
  23. Chaggar M., and Boubaker M. Identification Of New Iconic Objects For The Sustainable Development Of Hergla (Tunisia). International Journal of Engineering Technologies and Management Research. 2018, 5(12): 101-113. https://doi.org/10.29121/ijetmr.v5.i12.2018.332.
  24. Coastal Protection and Development Agency (CPDA). Protection of sensitive sites by land management: Hergla. 2005 : 24.
  25. Teillet, P. M. Image correction for radiometric eVects in remote sensing. International Journal of Remote Sensing. 1986, 7: 1637–1651.
  26. Richards, J. A. Remote sensing digital image processing: An introduction, 2nd edn (New York: Springer-Verlag). 1993.
  27. Olsson, H. Reflectance calibration of Thematic Mapper data for forest change detection. International Journal of Remote Sensing. 1995, 16: 81–96.
  28. Chavez, P. S. Jr, Image-based atmospheric corrections – revisited and improved. Photogrammetric Engineering and Remote Sensing. 1996, 62: 1025–1036.
  29. Richter, R. Correction of atmospheric and topographic eVects for high spatial resolution satellite imagery. International Journal of Remote Sensing. 1997, 18: 1099-1111.
  30. Campbell, J. B., & Wynne, R.H. Introduction to remote sensing (5 ed.). New York, É-U.: Guilford Press. 2011.
  31. Rouse, J.W., & Haas, R.H. Monitoring vegetation systems in the great plain with ERTS.Third ERTS Symposium. 1973, vo.1: 309-317.
  32. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 1979, vo.8, 127-150.
  33. Wu, Q. GIS and Remote Sensing Applications in Wetland Mapping and Monitoring. Elsevier. 2018, 141-157.
  34. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing. 1996, 17:1425-1432.
  35. Gao, B.C. A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. 1996, 58: 257- 266.
  36. Congalton G. & Green  K. Assessing the accuracy of remotely sensed data.Principes and Practices.2"ed.CRC Press. 2009: 200.
  37. Dehni, A., &Lounis, M. Remote Sensing Techniques for Salt Affected Soil Mapping: Application to the Oran Region of Algeria. Procedia Engineering. 2012, 33: 188-198.
  38. Chris, L. L., William, H. B., & Jerry, L. W.Testing a GIS model of habitat suitability for a declining grassland bird. Environ Manag. 2002, 30 (1): 88–97.
  39. Adam, E., Mutanga, O., Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management. 2010, 18 : 281–296.
  40. Dong, Z., Wang, Z., Liu, D., Song, K., Li, L., Jia, M., Ding, Z. Mapping Wetland Areas Using Landsat-Derived NDVI and LSWI: A Case Study of West Songnen Plain, Northeast China. Indian Soc. Remote Sens. 2014, 42: 569–576.
  41. Lang, M.W., Bourgeau-Chavez, L.L., Tiner, R.W., Klemas, V.V. Advances in remotely sensed data and techniques for wetland mapping and monitoring. In: Tiner, R.W., Lang, M.W., Klemas, V.V. (Eds.), Remote sensing of wetlands: applications and advances. CRC Press, Boca Raton, FL. 2015: 79–116.
  42. A., and Budagov I.V. Environmental Change And Landuse Scenarios Under Changing Climates: The Experience In The Upper Cross River Region, Nigeria.International Journal of Engineering Technologies and Management Research. 2019, 6(11): 32-42. https://doi.org/10.5281/zenodo.3563056.
  43. Erwin, K.L. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management. 2009, 17: 71.
  44. Jiang, F.; Qi, S.; Liao, F.; Ding, M.; Wang, Y. Vulnerability of Siberian crane habitat to water level in Poyang Lake wetland, China. Gisci. Remote Sens. 2014, 51: 662–676.
  45. Karim A. Wetlands in Tunisia : A brief prelimenary overview. Official Publication of the Tunisian Association of Environmental Law. 2021. https://atdddenvironnement.wixsite.com/atde/post/wetlands-in-tunisia-a-brief-preliminary-overview

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
wetlands, GIS, Google Earth, radiometric indexes, changes, Tunisi
Published
2021-12-14
How to Cite
1.
Bela Fekih Boussema S, Chaabane B, Khebour Allouche F, Bel Haj Salah R. Impact of climate change on the spatiotemporal variability of a coastal ecosystem in the Tunisian Sahel. Alger. J. Eng. Technol. [Internet]. 2021Dec.14 [cited 2022Jan.25];50:72-9. Available from: https://jetjournal.org/index.php/ajet/article/view/127