Contribution to characterization of the Zinc retention by marl collected from the aquifer substratum
Abstract
Two samples (S20 and S6) of marl are collected from aquifer substratum of the watershed of Wadi El-Ghoula in order to make a comparative study to remove Zinc from solution. The DRX analysis indicate five phases Montmorillonite, Illite, Kaolinite, Calcite and Quartz X-Fluorescence shows the predominance of silica, alumina and lime. In FTIR analysis, all bands are identified for S20, S6. The specific surface area for S20 and S6 are equal respectively to 21.6206 m2/g and 24.6445 m2/g and our materials have a meso-porous character. The retention capacity at equilibrium for S20 and S6 are equal respectively to 9.94 (mg/g) and 9.87 (mg/g). Liquid film diffusion and intraparticle diffusion models control simultaneously the process of adsorption of zinc in Marl. Non-linear treatment gives Langmuir and Temkin as best model for S20 and Freundlich for S6. Radlish-Peterson is the best model for S20 but for S6 the best model is given simultaneously by Sips and Radlish-Peterson. The values of AIC and AICc give a good opportunity to separate between used isotherms models.
Downloads
Metrics
References
2. Lichtfous E, Schwarzbauer J, Robert D. Environmental Chemistry for a Sustainable World: Remediation of Air and Water Pollution. 2012; 379. http://dx.doi.org/10.1007./978-94-007-2442-6
3. Menacer S, Lounis A, Guedioura B, Bayou N. Uranium removal from aqueous solutions by adsorption on Aleppo pine sawdust, modified by NaOH and neutron irradiation. Desalination and Water Treatment. 2016; 57:34, 16184-16195. http://dx.doi.org/10.1080/19443994.2015.1077475.
4. Mukherjee S. Analytical Techniques for Clay Studies in: Mukherjee S. (eds) The science of clays Applications in Industry, Engineering and Environment. Capital Publishing Company.2013; 69-110. http://dx.doi.org/10.1007/978-94-007-6683-9_6
5. Farrah H, Hatton D, Pickering WF. The affinity of metal ions for clay surfaces. Chem. Geolo. 1980; 28: 55-68.
6. Zamzow M J, Murphy JE. Removing of metal cations from water using zeolites. Sep. Sci. Technol. 1992; 27: 1969-1984.
7. Zaidi S. Zeolites as Inorganic Ion Exchangers for Environmental Applications: An Overview in: Inamuddin and M. Luqman (eds), Ion Exchange Technology II: Applications, Springer, UK, 2012; 183-215. http://dx.doi.org/10.1007/978-94-007-4026-6.
8. Zinicovscaia I. Water quality A Major global problem in: Inga Zinicovscaia, L. cepoi (eds.) Ceanobacteria for Bioremediation of Wastewaters, Springer International Publishing Swetzerland; 2016,5-16. http://dx.doi.org/10.100/978-3-319-26751-7_2
9. Meetiyagoda TA, Fadilah K, Hagimori M, Senavirathna MD, Fujino T. Visualization and Quantification of the Impact of Humic Acid on Zinc Accumulation in Aquatic Plants Using a Low-Molecular-Weight Fluorescent Probe. Journal of Water and Environment Technology. 2021;19(2):49-63.
10. Jelle Mertens, Erik Smolders Zinc in B. J. Alloway (ed.) Heavy metals in: soils : trace metals and metalloids in soils and their bioavailability. Springer Science+Business Media Dordrecht. 2013. 465-493.
11. Zaid U H, Shafaqat A, Muhammad R, Afzal H, Zaheer A, Nasir R, Faraht A. Role of Zinc in Alleviating Heavy Metal Stress in: M. Naeem et al. (eds.), Essential Plant Nutrients. Springer International Publishing AG. 2017. 351-366. http://dx.doi.org/10.1007/978-3-319-58841-4_14
12. Angus M, Brown A. step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Computer Methods and Programs in Biomedicine. 2001; 65: 191–200.
13. Jose LB, Joseph J, Pignatello MT. ISOT-Calc: Aversatile tool for parameter estimation in sorption isotherms. Computer and Geosciences. 2016; 94: 11-17. http://dx.doi.org/10.1016/j.cageo.2016.04.008
14. Comuzzi C, Polese P, Melchior A, Portanova R, Tolazzi M. SOLVERSTAT: a new utility for multipurpose analysis. An application to the investigation of dioxygenated Co (II) complex formation in dimethylsulfoxide solution. Talanta. 2003;59(1):67-80.
15. Sandy MV, Kurniawan A, Ayucitra A, Sunarso J, Suryadi I. Removal of copper ion from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Front. Chem. Sci. Eng. 2012; 6(1): 58-66. http://dx.doi.org/10.1007:s11705-011-1160-6
16. Wu XL, Zhao D, Yang ST. Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin’an montmorillonite. Desalination. 2011; 269: 84-91. http://dx.doi.org/10.1016/j.desl.2010.10.046
17. Sdiri AT, Higashi T, Jamoussi F. Adsorption of copper and zinc onto natural clay single and binary systems. Int J. Environ. Sci. Technol. 2014 ; 11: 1081-1092. http://dx.doi.org/10.1007/s13762-013-0305-1
18. Remenárová L, Pipíška M, Horník M, Rozložník M, Augustín J, Lesný J. Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study. Journal of the Taiwan Institute of Chemical Engineers. 2012;43(3):433-443. http://dx.doi.org/10.1016/j.jtice.2011.12.004.
19. Hamidi A, Mohd N, Kamar S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in malayzia post treatment by heigt quality limestone. Bioresources technology. 2008; 99: 1578-1583.
20. Unuabonah EI, Omorogie MO, Oladoja NA. Modeling in adsorption: Fundamentals and Applications in Composite Nanoadsorbents. In G. Z. Kyzas A. C. Mitropoulos (eds) : composite nanoadsorbents, Elsevier; 2019; 85-118. http://dx.doi.org/10.1016/B978-0-12-814132-8.00005-8
21. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials. 2006; 135: 264-373. http://dx.doi.org/10.1016/j.jhazmat.2005.11.062
22. Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898; 24:1-39.
23. Lyubchik S, et al. The kinetic parameters evaluation for the adsorption process at liquid-solid interface in: Alexandra B. Ribeiro, Eduardo P. Mateus, Nazaré Couto (eds) Electrokinetic across disciplanes and continents. Springer. 2016; 81-109. http://dx.doi.org/10.1007/978-3-319-20179-5_5.
24. Ogata F, Iwata Y, Kawasaki N. Kinetics and Equilibrium Investigation of Cobalt(II), Nickel(II), and Tungsten(VI) Adsorption on Fly Ash Processed by Hydrothermal Treatment in an Alkaline Solution. Journal of Water and Environment Technology. 2015;13.
25. Stefanova RY. Metal removal by thermally activated clay marl. J. Environ. Sci. Health Part A. 2001; 36(3): 293-306. http://dx.doi.org/10.1081/ESE-100102923
26. Chen S, Shen W, Yu F. Huaping Wang Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose. Polym. Bull. 2009; 63:283-297. http://dx.doi.org/10.1007/s00289-0009-0088-1
27. Lim SF, Yung A, Lee W. Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environ. Dci. Pollut. Res. 2015; 22:10144-10158. http://dx.doi.org/10.1007/s11356-015-4203-6
28. Mahtab A,et al. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ. Sci. Pollut. Res. 2013; 20:8364-8373. http://dx.doi.org/10.1007/s11356-013-1676-z
29. Jianzhong G, Shunwei C, Li L, Bing L, Ping Y, Lijun Z, Yanlong F. Adsorption og dye from waste water using chitosan-CTAB modified bentonites. Journal of Colloid and Interface Science. 2012; 382: 61-66. http://dx.doi.org/10.1016/j.jcis.2012.05.044
30. Nguyen VH, et al. Highly effective adsorption of organic dyes from aqueous solutions on longan seed-derived activated carbon. Environmental Engineering Research. 2023; 28(3):220116. https://doi.org/10.4491/eer.2022.116
31. Keng-Tung Wu, et al. A novel approach to characterizing liquid-phase adsorption on highly porous activated carbons using the Toth equation. Chemical Engineering Journal 2013; 221, 373-381. http://dx.doi.org/10.1016/j.cej.2013.02.012
32. Foo KY, Hameed BH.Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal. 2010; 156: 2-9. http://dx.doi.org/10.1016/j.cej.2009.09.013
Copyright (c) 2023 Mourad Bellaloui, Messaoud Bennemla, Farida Semaoune, Djamel Larbaoui, Djaber Otsmane, Yasmine Melhani, Amina Amrane, Samia Ladjouzi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.