A Simulation and Analysis of I(V) and P(V) Characteristics of a Photovoltaic module under MATLAB/SIMULINK Connected to the Electrical Grid
Abstract
The objective of our work is the simulation and analysis of the I(V) and P(V) characteristics of a photovoltaic module under MATLAB/SIMULINK connected to the electrical network. To achieve this goal, we followed the following steps: At the start of work; we performed a simulation of a photovoltaic cell (photovoltaic module). By two methods: by simulation of the mathematical data of the model of a photovoltaic module inspired by the electrical diagram of a photovoltaic cell, by the use of the mathematical equations of: inverse saturation current, saturation current, photonic current, current of the shunt resistance, and the output current to create from each equation a model in MATLAB/SIMULINK, then we collect and connect these models according to the mathematical equation to obtain the final model of the output current of a photovoltaic module, and on the other hand by simulation through the model of the solar cell which exists in the SIMULINK library by checking the data of each box coming from this source. then we showed the Simulation of the BOOST converter with MPPT, and we presented the functional diagram of the PV generator and the BOOST converter with MPPT under MATLAB/SIMULINK, In the same context, we showed the voltage curve at the output of the command MMPT in MATLAB, the current curve at the output of the chopper booster, the curve of the voltage measured at the converter, the curve of the current measured at the converter, the curves of the phase currents of the network and the reference current, and the curve of PV generator power and Pmpp power At the end of the work, we connected this photovoltaic module to an electrical network, to see the impact of our network on the photovoltaic module and vice versa. Finally we explained and interpreted the results obtained according to our points of view.
Downloads
Metrics
References
Allagui S, Labiod S. Etude et simulation d’un système photovoltaïque. Mémoire de licence, Domaine : Sciences et Technologies, Université Badji Mokhtar de Annaba, Algeria; 2021.
Gahlot R, Mir S, Dhawan N. Recycling of Discarded Photovoltaic Solar Modules for Metal Recovery: A Review and Outlook for the Future. Energy Fuels. 2022;36:14554-72.
Ben Saoucha Z, Djehiche B. Simulation numérique de la cellule solaire Tandem Pérovskite/CIGS. Mémoire de master, Université Mohamed Boudiaf de Msila, Algeria; 2019.
Bagher AM, Vahid MMA, Mohsen M. Types of Solar Cells and Application. Am J Opt Photon. 2015;3:94-113.
Bouchareb K, Touati A. Modélisation et simulation d'un système PV adapté par une commande MPPT basée sur un mode glissant. Mémoire de MASTER Académique, Université 8 Mai 1945 – Guelma; 2021.
Bošnjaković M. Environmental Impact of PV Power Systems. Sustainability. 2023;15:11888.
Toulait A, Aili R. Modélisation et simulation sous MATLAB/SIMULINK d’un système photovoltaïque adapté par une commande MPPT. Mémoire de master, Université Mouloud Mammeri de Tizi Ouzou, Algeria; 2014.
Wang Y, Xia Z, Liu Y, Zhou H. Simulation of Perovskite Solar Cells with Inorganic Hole Transporting Materials. 2015;12:1-6.
Zidane AE, Sahtout M. Les systèmes photovoltaïques connectés au réseau. Mémoire de master, Université Badji Mokhtar, Annaba, Algeria; 2017.
Badawy WA. A Review on Solar Cells from Si-Single Crystals to Porous Materials and Quantum Dots. J Adv Res. 2015;6:123-32.
Bouguerra T. Optimisation d’un système photovoltaïque: Application en continu et en alternatif. Mémoire de magistère en électrotechnique, Université Mentouri de Constantine 1, Algeria; 2014.
Nabhani N, Emami M. Nanotechnologies and Its Applications in Solar Cells. In: International Conference on Mechanical and Industrial Engineering (ICMIE'2013); 2013 Aug 28-29; Penang. p. 88-91.
Materials Sciences and Applications. 2015;6:1145-55. Available from: http://dx.doi.org/10.4236/msa.2015.612113
Page J. The Role of Solar-Radiation Climatology in the Design of Photovoltaic Systems. In: McEvoy's Handbook of Photovoltaics. 3rd ed. Cambridge (MA): Elsevier Academic Press; 2018.
Desideri U, Zapparelli F, Garroni E. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations. 2013;765-84.
Yang D, Latchman H, Tingling D, Amarsingh AA. Design and return on investment analysis of residential solar photovoltaic systems. IEEE Potentials. 2015;34(4):11-7.
Fouad MM, Shihata LA, Morgan EI. An integrated review of factors influencing the performance of photovoltaic panels. Renew Sustain Energy Rev. 2017;80:1499-511.
Brunet C, Savadogo O, Baptiste P, et al. Impacts Generated by a Large-Scale Solar Photovoltaic Power Plant Can Lead to Conflicts between Sustainable Development Goals: A Review of Key Lessons Learned in Madagascar. Sustainability. 2020;12:7471.
Neukirchner L, Görbe P, Magyar A. Voltage unbalance reduction in the domestic distribution area using asymmetric inverters. J Clean Prod. 2017;142:1710-20.
HEP Group. Unintegrated Solar Power Plants. Available from: https://www.hep.hr/projects/renewable-energy-sources/unintegrated-solar-power-plants/3423 (accessed 2023 Jun 13).
Copyright (c) 2024 Anouar benhaimoura, Aissa Souli
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.