Indirect effect of Covid-19 on Vegetation Indices around the cement plant of Gabes region

  • Khaoula Ben Atia Zrouga Horticultural Sciences and Landscape Department, Higher Agronomic Institute of Chott Mariem, University of Sousse, Sousse, Tunisia; Lr GREE TEAM (LR17AGR01) INAT, University of Carthage, Tunis, Tunisia
  • Ben Amor Afef Drylands and Oases Cropping Institute of Arid Regions of Mednine, University of Gabes, Mednine, Tunisia
  • Khebour Allouche Faiza Horticultural Sciences and Landscape Department, Higher Agronomic Institute of Chott Mariem, University of Sousse, Sousse, Tunisia; Lr GREE TEAM (LR17AGR01) INAT, University of Carthage, Tunis, Tunisia
  • Bouthaina Dridi Almohandes UR13AGR08 “Environmental biochemistry and Eco-toxicology”, Higher Agronomic Institute of Chott Mariem, University of Sousse, Sousse, Tunisia
Keywords: Cement plant, Plant cover, Sentinel 2A, Covid-19, Radiometric Vegetation Indices


To contain the Covid-19 pandemic, Tunisia imposed a national lockdown at the end of March 2020, a decision that resulted in a massive industrial complexes shutting down. The cement industry of Gabes was one of these complexes. However, to assess the impact of Covid-19 on the state of the vegetation around this industry three radiometric vegetation indices (RIs), NDVI, SAVI and EVI, were calculated from two Sentinel-2A imageries extracted at 22th December 2018 and 16th December 2020. Six plant species such as Oleo europaea, Ficus caria, Medicago sativa, Prunus persica vulgaris, Zygophyllumalbum and Helianthemum kahiricum were collected from 30 sites. Results suggest that, the period of pre-outbreak has the lowest averages of RIs. While, the after outbreak date has the higher levels of RIs presenting especially perennial species such as Oleo europaea. Then, EVI was the most higher index comparing to the rest of indices whatever the year studied. It was the most sensitive to cement dust and more susceptible to detect defoliation. Finally, through a remote application (RIs), the period of confinement allowed to improve the state of the vegetation surrounding the cement plant. It has helped the ecosystem to regenerate, especially perennial plant species.


Cite as:

Ben Atia Zrouga K, Ben Amor A, Dridi Almohandes B and Khebour Allouche F. Indirect effect of Covid-19 on Vegetation Indices around the cement plant of Gabes region. Alg. J. Eng. Tech. 2021, 4:59-65.


  1. Chen K, Wang M, Huang C, Kinney P L & Anastas P T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. The Lancet Planetary Health. 2020, 4;6 : 210-212.
  2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y & Cao B. Clinical features of patients infected with 2019 novel coronavirusin Wuhan, China. The  2020, 395;10223: 497–506.
  3. WHO World Health Organization. Coronavirus disease (COVID-19) Weekly epidemiological and Operationalupdates December.  
  4. Shrestha A M, Shrestha U B, Sharma R, Bhattarai S, Tran H N T & Rupakheti M. No Lockdown caused by COVID -19 pandemic reduces air pollution in cities worldwide Title. Environ Poll. 2020.
  5. Tobías A, Carnerero C, Reche C, Massagué J, Via M, MinguillónM C, Alastuey A & Querol  Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS -CoV -2 epidemic. Sci Total Environ. 2020. 726: 138540.
  6. Wang, Q., Su, M. A preliminary assessment of the impact of COVID -19 on environment–A case study of China. Sci Total Environ. 2020, 728: 138915.
  7. Zhang R, Zhang Y, Lin H, Feng X, Fu T M & Wang Y. NOx Emission Reduction and Recovery during COVID -19 in East China. Atmosphere. 2020, 11: 4.
  8. Dutheil, Frédéric, Baker J S & Navel V. COVID-19 asa factor influencing air pollution? Environmental Pollution. 2020, 263: 2019-2021.
  9. Muhammad S, Long X & Salman M. COVID -19 pandemic and environmental pollution: A blessing in disguise?. Sci Total Environ.2020, 138820.
  10. Kanniah, K. D., Kamarul Zaman, N. A. F., Kaskaoutis, D. G., & Latif, M. T. (2020). COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736, 139658.
  11. Arkin F. Pollutants, Asian COVID-19 lockdowns clear the air of pollutants. Sci Dev Net ,(,2020.
  12. Atmosphere copernicus amid coronavirus outbreak copernicus monitors reduction particulate matter PM2.5 over china.2020.
  13. ESA European Space Agency,, (2020)
  14. Tunisian Republic Presidency.2020.
  15. BenMiled S & Kebir A. Simulations of the spread of COVID-19 and control policies in Tunisia, ArXiv, 2020:1–11.
  16. Elkadhi Z, Elsabbagh D, Frija A, Lakoud T, Wiebelt M & Breisinger C. The impact of Covid-19 on Tunisia’seconomy, Agri- food System, and  Middle East and North Africa IFPRI. 2020; 13.
  17. Ben Atia Zrouga K, Mendes M P, Falcão A P, Almohandes B D, Hachicha M & Khebour Allouche F. Mapping heavy metal (Cu, Zn, and Pb) pollution and ecological risk assessment, in the surroundings of Gabes cement plant - Tunisia. International Journal of Phytoremediation. 2020: 1-8.
  18. Elloumi N, Ben Amor A, Zouari M, Belhaj D, Ben Abdallah F & Kallel M. Adaptive biochemical responses ofPunica Granatum to atmospheric fluoride  Fluoride. 2016, (49) 3 : 357–365.
  19. Ben Amor A, Elloumi N, Chaira N & Nagaz K. Morphological and Physiological Changes Induced in the Date Palm Trees (Phoenix dactylifera) Exposed to Atmospheric Fluoride Pollution.Tunisian Jouranl of Plant Protection. 2018, 13;1:11-22.
  20. Nadgórska-Socha A, Kandziora-Ciupa M, Trzęsicki M & Barczyk G. Air pollution tolerance index and heavy metal bioaccumulation in selected plant speciesfrom urban  Chemosphere. 2017, 183 : 471 _482.
  21. Ben Amor A, Bagues Mohamed, Elloumi N, Chaira N, Rahmeni Rami & Nagaz K. Suitability of four main Mediterranean tree crop for their growth in peri-urban agriclture and restoration (Gabes, Tunisia). Environ Sci Pollut Res. 2021.
  22. Mansour N & Salem S Ben. Socio-Economic Impacts of Covid-19 on the Tunisian Economy. Journal of the International Academy for Case Studies. 2020, 26(4): 1–13.
  23. Haydar A. Industrialisation de gabes et ses conséquences :Etude géographie urbaine et économique. Université de Tunis ; 1987 : 332.
  24. National Agency of Environmental Protection of Tunisia.2018.
  25. Rouse J W, Haas R H, Schell J A, Deering DW & Harlan J C. Monitoring the Vernal Advancement and Retrogradation of Natural Vegetation. In NASA/GSFC, Greenbelt, MD; 1974: 371.
  26. HueteA R, Liu H Q, Batchily K & Van W L. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sensing of Environment. 1997, 59 ; 3 :440–451.
  27. Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 1988, 25: 295–309.
  28. DielloP, Mahe G, Paturel J E, Dezetter A, Delclaux F, Servat E & Ouattara   Relationship between Rainfall and Vegetation Indexes in Burkina Faso: A Case Study of the Nakambé Basin. Hydrological Sciences Journal. 2005, 50;2.
  29. Walker J J, de Beurs K M & Wynne R H. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sensing of Environment. 2014, 144: 85–97.
  30. Zhou J, Jia L, Menenti M, van Hoek M, Lu J, Zheng C & Yuan X. Characterizing vegetation response to rainfall at multiple temporal scales in the Sahel-Sudano-Guinean region using transfer function analysis. Remote Sensing of Environment. 2021, 252; 20 : 112108.
  31. Firozjaei M K, Kiavarz M, Alavipanah S K, Lakes T & Qureshi S. Monitoring and forecasting heat islandintensity through multi- temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecological Indicators. 2018,  91: 155-170.
  32. Ju M J, Oh J & Choi Y H. Changes in air pollution levels after COVID-19 outbreak in Korea. Science of the Total Environment. 2021, 750: 141521.
  33. Afshari R. Indoor air quality and severity of Covid- 19 Where communicable and non- communicable preventive measures meet. Archives of Bone and Joint Surgery. 2020, 9;1:1-2.
  34. Asna-asharya M, Farzaneganb, Mohammad Reza Malek, Mehdi Feizia, Saeed & Sadati. COVID-19 Outbreak and Air Pollution in Iran: A Panel VAR Analysis. 16-2020, Philipps-University Marburg, Joint Discussion Paper Series in Economics, School of Business and Economics, Marburg. 2020.
  35. Faridi S, Yousefian F, Niazi S, Ghalhari M R, Hassanvand M S & Naddafi K. Impact of SARS-CoV-2 on ambient air particulate matter in Tehran. Aerosol and Air Quality Research. 2020, 20(8): 1805–1811.
  36. OduImpact of cement dust emission on leaf chlorophyll of agricultural crops. Proceeding on environmental monitoring and impact assessment seminar (EEC). 1994: 404- 410
  37. Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 2002, 83, 1;2: 195 – 213


Download data is not yet available.


Metrics Loading ...
How to Cite
Ben Atia Zrouga K, Ben Amor A, Khebour Allouche F, Dridi Almohandes B. Indirect effect of Covid-19 on Vegetation Indices around the cement plant of Gabes region . Alger. J. Eng. Technol. [Internet]. 2021Mar.9 [cited 2022May16];40:59-5. Available from: